Перечень компетенций и этапы их формирования в процессе освоения образовательной программы Компетенция Этап		Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания Показатель оценивания Критерий Шкала оценивания			Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций	Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта, характеризующих этапы формирования компетенций
	5 - 3,1-2		оценивания		в процессе освоения образо- вательной программы	
ОПК-2: спо- собностью применять со- ответствую- щий физико- математиче- ский аппарат, методы анали- за и моделиро- вания, теоре- тического и эксперимен- тального ис- следования при решении про- фессиональных зада	1 уровень 2 уровень	Знать физическую сущность рассматриваемых явлений и закономерностей, знание законов и теорий на базовом уровне. Уметь применять методы анализа и моделирования при решении задач на базовом уровне; Владеть применением методов теоретического и экспериментального исследования при решении задач на базовом уровне. Знать Понимание физической сущности рассматриваемых явлений и закономерностей, знание законов и теорий на повышенном уровне; Уметь Применять методы анализа и моделирования при решении задач на повышенном уровне; Владеть Применением методов теоретического и экспериментального исследования при решении задач на повышенном	Уровень усвоения материала, предусмотренного программой курса (высокий, хороший, достаточный, материал не освоен). Уровень раскрытия причинноследственных связей (высокий, достаточно высокий, низкий, отсутствует). Качество ответа (логичность, убежденность, общая эрудиция) (на высоком уровне, а достаточно высоком уровне, ответ нелогичен или отсутствует)	Отлично: 1. Уровень усвоения материала, предусмотренного программой курса высокий 2. Уровень раскрытия причинноследственных связей — высокий. 3. Качество ответа (логичность, убежденность, общая эрудиция) — на высоком уровне. Хорошо: 1. Уровень усвоения материала, предусмотренного программой курса — на хорошем уровне. 2. Уровень раскрытия причинноследственных связей — достаточно высокий. 3. Качество ответа (логичность, убежденность, общая эрудиция) — на достаточно высоком уровне Удовлетворительно: 1. Уровень усвоения материала, предусмотренного программой курса — на достаточном уровне. 2. Уровень раскрытия причинноследственных связей — низкий.	Вопросы по защите ГРГ приведены в приложении 2 (вопросы 1-22).	Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности приведены в стандарте ДВГУПС СТ 02-28-14 «Формы, периодичность и порядок текущего контроля успеваемости и промежуточной аттестации».
		уровне.		3. Качество ответа (логичность, убеж-		

	D H 1 V	~	Ъ	
3	Знать Понимание физической	денность, общая эрудиция) – логика	Вопросы к экзамену	
уровень	сущности рассматриваемых	ответа соблюдена, убежденность в	приведены в приложе-	
	явлений и закономерностей,	правильности ответа – низкая	нии 3 (вопросы 1-33).	
	знание законов и теорий на вы-	Неудовлетворительно:	Задачи к экзамену	
	соком уровне.	1. Уровень усвоения материала, пре-	приведены в приложе-	
	Уметь Применять методы ана-	дусмотренного программой курса –	нии 4 (задачи 1-233).	
	лиза и моделирования при ре-	материал не освоен.	Образец билетов к	
	шении задач на высоком уров-	2. Уровень раскрытия причинно-	экзамену	
	не.	следственных связей – отсутствует.	приведен в приложе-	
	Владеть Применением методов	3. Качество ответа (логичность, убеж-	нии 5.	
	теоретического и эксперимен-	денность, общая эрудиция) – ответ		
	тального исследования при ре-	нелогичен, либо ответ отсутствует		
	шении задач на высоком уров-			
	не.			

Контрольные вопросы по лабораторным работам

- 1. Основные динамические характеристики поступательного движения?
- 2. Как формулируются законы динамики Ньютона? В каких системах отсчёта выполняются эти законы?
- 3. Сформируйте закон сохранения импульса. Как учитывается направление движения взаимодействующих тел в законе сохранения импульса.
- 4. Сформулируйте закон сохранения энергии. Дайте определения кинетической и потенциальной энергиям.
- 5. Сформулируйте закон сохранения энергии для консервативной системы. Что такое консервативная система?
- 6. Сформулируйте закон сохранения энергии для консервативной системы. Что такое диссипативная система?
- 7. Вывести формулу для определения скорости шарика до и поле удара.
- 8. Что называется импульсом?
- 9. Закон сохранения импульса?
- 10. Что называется энергией?
- 11. Назовите виды механической энергии.
- 12. Закон сохранения энергии в механике.
- 13. Какой удар называется «упругим» и какой «неупругим»?
- 14. Выведите формулу скоростей шаров после удара для абсолютно упругого удара.
- 15. Выведите формулу скоростей шаров после удара для абсолютно неупругого удара.
- 16. Выведите формулу коэффициента восстановления энергии.
- 17. Что определяет коэффициент восстановления?
- 18. Что называется моментом силы? В каких единицах измеряется момент силы в системе «СИ»?
- 19. Что называется моментом инерции тела? От чего зависит момент инерции тела? В каких единицах он измеряется в системе «СИ»?
- 20. Чему равна кинетическая энергия вращающегося тела?
- 21. Выведите из второго закона Ньютона основной закон динамики вращательного движения твёрдого тела для импульса момента силы.
- 22. Что такое момент импульса тела? В каких единицах он измеряется в системе «СИ»?
- 23. Сравните полученные в работе значения $(J_U)_1$ и $(J_U)_2$. Произошло ли изменение момента инерции цилиндра с изменением его расстояния от оси вращения маятника?
- 24. Запишите уравнение состояния идеального газа. Каков физический смысл универсальной газовой постоянной?
- 25. Сформулируйте и запишите первое начало термодинамики. Запишите уравнение изопроцессов и примените к ним первое начало термодинамики.
- 26. Что называется удельной и молярной теплоёмкостью газа? Как выражаются теплоёмкости газов при постоянном объёме и постоянном давлении. Почему *C*_P всегда больше?
- 27. Выведите соотношение, связывающее C_P и C_V (уравнение Майера).
- 28. Какой процесс называется адиабатическим и как записывается уравнение адиабаты в переменных P-V и P-T?
- 29. Почему при адиабатическом сжатии газ нагревается, а при расширении охлаждается?
- 30. В чем заключается явление поверхностного натяжения?
- 31. Каково происхождение сил поверхностного натяжения?
- 32. Что такое коэффициент поверхностного натяжения?
- 33. Что такое поверхностно-активные вещества? Как они влияют на коэффициент поверхностного натяжения?
- 34. В чем заключаются явления смачивания и несмачивания?
- 35. Опишите причины капиллярных явлений.
- 36. Опишите сущность метода отрыва кольца и капиллярного метода.
- 37. Какую форму жидкости принимают в невесомости? Почему?
- 38. Приведите примеры применения капиллярных явлений.
- 39. Каким образом жук-водомерка держится на поверхности воды?
- 40. Почему сила трения шарика о жидкость может быть заменена трением между слоями жидкости?
- 41. Что такое время релаксации при движении шарика в вязкой среде?
- 42. Что такое вязкость жидкости?
- 43. Что называется коэффициентом вязкости жидкости? От чего зависит коэффициент вязкости жидкости?
- 44. Как распределяется заряд в заряженном проводнике?
- 45. Чему равен потенциал заряженного проводника?
- 46. Что называется электроёмкостью проводника? Единицы измерения ёмкости.
- 47. Что представляет собой конденсатор? Выведите формулу ёмкости плоского конденсатора и приведите формулы ёмкости для сферического и цилиндрического конденсаторов.
- 48. Выведите формулу ёмкости батареи конденсаторов, соединённых последовательно и для конденсаторов соединенных параллельно.
- 49. Выведите формулы энергии заряженного проводника, заряженного конденсатора и однородного электрического поля.
- 50. Объясните причину наличия на границе металл-вакуум двойного электрического слоя.
- 51. В чём измеряется работа выхода электронов из металла и в каких специальных единицах она измеряется?
- 52. В чём заключается явление термоэлектронной эмиссии? Способы повышения термоэлектронной эмиссии.
- 53. Что такое диод? Устройство диода.
- 54. Что называется вольт-амперной характеристикой электромагнитной лампы?
- 55. Объясните наличие насыщения при работе диода. Запишите закон Ричардсона-Дешмана. Объясните наличие анодного тока при отсутствии анодного напряжения при работе диода.
- 56. Сформулируйте и запишите закон Богуславского-Ленгмюра.

- 57. При каких условиях возникает контактная разность потенциалов?Сформулируйте закон Вольта. Запишите математическое выражение первого закона Вольта.
- 58. Пользуясь математическим выражением первого закона Вольта, покажите, что контактная разность потенциалов цепи, состоящей из четырёх различных металлов, при одинаковой температуре контактов, зависит только от крайних в цепи металлов.
- 59. Объясните возникновение термоэдс в замкнутой цепи, состоящей из двух металлов.
- 60. Какое практическое применение у термоэлектрических явлений.
- 61. Что такое плотность тока?Приведите закон Ома в дифференциальной форме.
- 62. Приведите закон Джоуля-Ленца в дифференциальной форме.
- 63. Физический смысл ЭДС.
- 64. Дайте определение «полной», «полезной» и «потерь» мощности.
- 65. При каком условии полезная мощность максимальна? Докажите.
- 66. Коэффициент полезного действия источника тока, Рассчитайте КПД при максимальной полезной мощности.
- 67. Основные характеристики электрического поля.
- 68. Сформулируйте и запишите теорему Остроградского-Гаусса.
- 69. Запишите уравнение движения зарядов в электрическом поле.
- 70. Физические основы электрической фокусировки пучка электронов (электрическая линза).
- 71. Устройство электроннолучевой трубки.
- 72. От чего зависит смещение электронного луча на экране осциллографа?
- 73. Перечислите основные узлы осциллографа и опишите их назначение.
- 74. Что представляет собой диполь?
- 75. Что называется электрическим моментом диполя?
- 76. В чём состоит явление поляризации диэлектрика?
- 77. Что такое вектор поляризации, и чему численно он равен?
- 78. В чём заключается физический смысл диэлектрической проницаемости вещества?
- 79. Что такое сегнетоэлектрики, чем они отличаются от обычных диэлектриков?
- 80. Охарактеризуйте векторы E и \overrightarrow{D} , какая связь существует между ними?
- 81. Докажите, что напряжение, подаваемое на вертикально отклоняющие пластины $U_{_y}$, пропорционально вектору поляризации P .
- 82. Докажите, что нпряжение, подаваемое на горизонтально отклоняющие пластины $U_{_{\mathrm{x}}}$, пропорционально E.
- 83. Дайте определение закона Ома для однородного и неоднородного участков цепи.
- 84. Сформулируйте правила Кирхгофа. Примените их к схеме, предложенной преподавателем.
- 85. Что такое напряжение, ЭДС и разность потенциалов?
- 86. Что лежит в основе измерения сопротивления методом вольтметра-амперметра? Почему на практике чаще используется схема, изображенная на рисунке 2.2.6?
- 87. Как уменьшить ошибку измерения сопротивлений методом вольтметра-амперметра?
- 88. В чём заключается метод замещения для измерения сопротивлений?
- 89. Сформулируйте условия равновесия моста?
- 90. Какое преимущество двойного моста над одинарным?
- 91. Дайте определение колебательного процесса и колебательной системы.
- 92. В какой цепи могут возникнуть электромагнитные колебания и почему?
- 93. Объясните процесс колебаний в колебательном контуре.
- 94. От чего зависит период собственных колебаний?
- 95. Почему электромагнитные колебания в реальном контуре затухают?
- 96. Как получить в контуре незатухающие колебания?
- 97. Что понимается под логарифмическим декрементом затухания и что он характеризует?
- 98. Теоретически доказать связь между коэффициентом затухания и логарифмическим декрементом затухания.
- 99. Объясните физический смысл добротности колебательного контура.
- 100. Какое устройство называется магнетроном?
- 101.От чего зависит скорость электронов, вылетающих из катода лампы?
- 102. На основании какого явления происходит выход электронов из катода лампы?
- 103. Почему при некотором значении тока соленоида электроны в лампе не попадают на анод?
- 104. Совершает ли работу сила Лоренца?
- 105. Зависит ли период вращения Т электронов в магнетроне от их начальной скорости?
- 106. Оказывает ли существенное влияние на траекторию электрона в магнетроне магнитное поле Земли и почему?
- 107. Как определяется направление силы Лоренца, действующей на электрон в магнетроне?
- 108. Изобразите траектории электронов в магнетроне при различных значениях тока в соленоиде.
- 109. Представьте уравнение (10 а) в скалярной форме, спроектировав его на оси (X, Y, Z).
- 110. Физический смысл индукции магнитного поля.
- 111. Закон Био-Савара-Лапласа для элемента тока.
- 112. Выведите формулу индукции магнитного поля прямолинейного тока.
- 113. Выведите формулу индукции магнитного поля кругового тока.
- 114. Элементы магнитного поля Земли.
- 115. Что такое «вихревое магнитное поле»?
- 116. Магнитное поле движущегося заряда.
- 117. Сила Лоренца.

- 118. Сила Ампера.
- 119. Магнитное поле рамки с током.
- 120. Как определяется магнитный момент атома?
- 121. Что такое вектор намагниченности вещества?
- 122. Какая связь между характеристиками магнитного поля в веществе?
- 123. Какова природа диамагнетизма?
- 124. Какие вещества относятся к парамагнетикам?
- 125.В чём сущность доменной теории ферромагнетизма?
- 126. Как объясняется явление гистерезиса в ферромагнетиках?
- 127. Как объяснить явление потерь энергии при перемагничивании ферромагнетика?
- 128.В чём заключается явление электромагнитной индукции? Проанализируйте опыты Фарадея.
- 129. Что является причиной возникновения ЭДС индукции в замкнутом проводящем контуре? От чего и как зависит ЭДС индукции, возникающая в контуре?
- 130.Почему для обнаружения индукционного тока лучше использовать замкнутый проводник в виде катушки, а не в виде одного витка провода?
- 131. Сформулируйте правило Ленца, проиллюстрировав его примерами.
- 132.Всегда ли при изменении потока магнитной индукции в проводящем контуре в нём возникает ЭДС индукции? Индукционный ток?
- 133. Возникает ли индукционный ток в проводящей рамке, поступательно движущейся в однородном магнитном поле?
- 134. Покажите, что закон Фарадея есть следствие закона сохранения энергии.
- 135. Какова природа электромагнитной индукции?
- 136.Выведите выражение для ЭДС индукции в плоской рамке, равномерно вращающейся в однородном магнитном поле. За счёт чего её можно увеличить?
- 137. Что такое «вихревые токи»? Вредны они или полезны?
- 138. Почему сердечники трансформаторов не делают сплошными?
- 139.В чём заключается явление самоиндукции и взаимоиндукции? Вычислите ЭДС индукции для обоих случаев.
- 140. Когда ЭДС самоиндукции больше при замыкании или размыкании цепи постоянного тока?
- 141.В чём заключается физический смысл индуктивности контура? В чём заключается физический смысл взаимной индуктивности двух контуров? От чего они зависят?
- 142. Как применить закон Био-Савара-Лапласа к расчету магнитных полей?
- 143. Что называется циркуляцией вектора магнитной индукции магнитного поля?
- 144.Сформулируйте теорему о циркуляции вектора магнитной индукции (вектор B), сравните с теоремой о циркуляции напряженности электростатического поля \overrightarrow{E} .
- 145.В чём заключается эффект Холла?
- 146. Нарисуйте магнитное поле соленоида: короткого и очень длинного.

Приложение 2

Вопросы по защите РГР

- " Механика"
- 1. Среднее ускорение. Мгновенное ускорение. Касательное и нормальное ускорение. Равномерное и равноускоренное лвижение
- 2. Законы Ньютона: инерциальные системы отсчета, второй закон Ньютона (дифференциальная форма второго закона Ньютона), третий закон Ньютона.. Сложение сил.
- 3. Определение механической работы (постоянной и меняющейся) силы. Графическое представление работы.
- 4. Кинетическая энергия. Связь кинетической энергии с работой. Примеры.
- 5. Консервативные силы. Потенциальное поле. Потенциальная энергия и ее связь с работой. Потенциальная энергия тела в поле тяжести Земли. Энергия сжатой пружины.
- 6. Механическая энергия. Закон сохранения механической энергии. Примеры.
- 7. Кинематика вращательного движения. Угловое перемещение, угловая скорость и угловое ускорение. Векторный характер величин. Частота и период вращения.
- 8. Определение момента силы. Плечо силы. Основное уравнение динамики вращательного движения.
- 9. Момент инерции абсолютно твердого тела (вычисления моментов инерции). Физический смысл момента инерции. Теорема Штейнера.
- 10. Определение момента импульса. Закон сохранения момента импульса. Примеры.
- 11. Кинетическая энергия вращающегося тела. Работа при вращательном движении. Энергия катящегося цилиндра.

"Молекулярная физика и термодинамика"

- 12. Основное уравнение молекулярно-кинетической теории идеального газа. Идеальный газ. Газовые законы. Уравнение Менделеева-Клапейрона.
- 13. Закон Максвелла для распределения молекул по скоростям.
- 14. Барометрическая формула. Распределение Больцмана.
- 15. Число степеней свободы. Закон Больцмана о равнораспределении энергии по степеням свободы.
- 16. Внутренняя энергия идеального газа. Работа газа при расширении. Работа газа при различных процессах.
- 17. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
- 18. Теплоемкость газов. Уравнение Майера.

- 19. Круговой процесс. Обратимый, необратимый процесс. Цикл Карно и его КПД.
- 20. Статистические закономерности распределения молекул газа по объему. Энтропия и ее статистическое толкование.
- 21. Изменение энтропии. Расчет изменения энтропии при различных процессах.
- 22. Второе начало термодинамики. Теорема Нернста.

" Электростатика и постоянный ток"

- 23. Закон Кулона. Применение закона Кулона в случае неточечных заряженных тел.
- 24. Электрическое поле. Напряженность электростатического поля. Принцип суперпозиции. Силовые линии.
- 25. Теорема Остроградского-Гаусса для электростатического поля. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной плоскости.
- 26. Теорема Остроградского-Гаусса для электростатического поля. Применение теоремы Остроградского-Гаусса для расчета электростатического поля заряженной сферы.
- 27. Теорема Остроградского-Гаусса для электростатического поля. Применение теоремы Остроградского-Гаусса для расчета электростатического поля равномерно заряженного шара.
- 28. Работа сил электростатического поля по перемещению заряда. Циркуляция вектора напряженности электростатического поля.
- 29. Потенциал электростатического поля. Эквипотенциальные поверхности. Взаимосвязь напряженности и потенциала. Взаимное расположение силовых линий и эквипотенциальных поверхностей.
- 30. Проводники в электростатическом поле. Конденсаторы. Электроемкость плоского конденсатора.
- 31. Энергия системы зарядов. Энергия электростатического поля.
- 32. Характеристики постоянного тока: сила тока, плотность тока, сопротивление, напряжение, разность потенциалов. Уравнение непрерывности. Дифференциальное уравнение непрерывности.
- 33. Закон Ома для участка цепи и для полной цепи. Электродвижущая сила источника тока.
- 34. Законы Ома в дифференциальной форме.
- 35. Работа и мощность тока. Закон Джоуля-Ленца.

"Электромагнетизм"

- 36. Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-Лапласа для расчета индукции магнитного поля бесконечного, прямого проводника с током.
- 37. Закон полного тока (теорема о циркуляции вектора индукции магнитного поля). Применение закона полного тока для расчета поля бесконечно длинного соленоида. Поток вектора магнитной индукции. Теорема Остроградского-Гаусса для магнитного поля.
- 38. Сила Лоренца. Движение заряженной частицы в магнитном поле. Эффект Холла.
- 39. Сила Ампера. Взаимодействие параллельных токов.
- 40. Магнитные моменты электронов и атомов. Диамагнетизм. Магнетики.
- 41. Вектор намагниченности. Магнитная восприимчивость. Диа-, пара-магнетики. Магнитное поле в веществе. Магнитная проницаемость. Ферромагнетики.
- 42. Явления электромагнитной индукции. Вывод закона Фарадея-Ленца. Правило Ленца.
- 43. Самоиндукция. Индуктивность. Индуктивность бесконечно длинного соленоида. Энергия магнитного поля. Объемная плотность энергии.
- 44. Система уравнений Максвелла. Значение теории Максвелла.

" Колебания и волны"

- 45. Гармонические колебания и их характеристики. Кинематика гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия гармонических колебаний (механических и электрических).
- 46. Дифференциальное уравнение гармонических колебаний пружинного и физического маятников. Период колебаний этих маятников.
- 47. Гармонические колебания в колебательном контуре. Формула Томсона.
- 48. Дифференциальное уравнение затухающих механических и электрических колебаний. Логарифмический декремент затухания.
- 49. Дифференциальное уравнение вынужденных механических колебаний и его решение. Резонансные кривые.
- 50. Переменный ток. Полное сопротивление цепи переменного тока. Последовательное и параллельное соединение.
- 51. Сложение колебаний одного направления одинаковой частоты. Векторные диаграммы. Сложение колебаний одного направления. Биения. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 52. Волновые процессы. Продольные и поперечные волны. Уравнение бегущей волны. Волновое уравнение. Волновой пакет. Групповая скорость.

"Оптика"

- 53. Электромагнитные волны. Характеристики световых волн. Интенсивность световой волны.
- 54. Когерентность световых волн. Интерференция света от двух источников. Интерференционные условия для разности фаз и разности хода.
- 55. Методы наблюдения интерференции света (бипризма Френеля, опыт Юнга)
- 56. Интерференция в тонких пленках. Вывод формулы для оптической разности хода лучей в тонкой пленке.
- 57. Виды дифракции. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция света на круглом отверстии, от круглого диска, на узкой щели, на дифракционной решетке.
- 58. Дифракция рентгеновских лучей. Условие Вульфа-Брэггов. Применение дифракции рентгеновского излучения.

- 59. Естественный и поляризованный свет. Закон Брюстера. Закон Малюса. Поляризация света при двойном лучепреломлении. Дихроизм. Призма Николя. Оптическая активность вещества.
- 60. Характеристики теплового излучения. Закон Кирхгофа. Закон Стефана- Больцмана. Закон смещения Вина. Закон Рэлея Джинса. Ультрафиолетовая катастрофа. Формула Планка. Законы теплового излучения и их получение из формулы Планка.
- 61. Законы фотоэффекта. Вольтамперная характеристика фототока. Задерживающий потенциал. Ток насыщения. Работа выхода. Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта.
- " Физика твердого тола"
- 62. Фотоны. Давление света Эффект Комптона. Корпускулярно-волновой дуализм света.
- 63. Опыт Резерфорда. Постулаты Бора.
- 64. Корпускулярно-волновой дуализм вещества. Длина волны де-Бройля. Экспериментальные доказательства волновых свойств частиц.
- 65. Соотношение неопределенностей Гейзенберга. Вывод соотношения неопределенностей на основе волновых свойств частии
- 66. Уравнение Шредингера. Физический смысл пси-функции. Решение уравнения Шредингера для бесконечно-глубокой потенциальной ямы.
- 67. Потенциальный барьер. Туннельный эффект. Гармонический осциллятор.
- 68. Закономерности в атомных спектрах. Формула Бальмера. Боровская модель атома водорода. Достоинства и недостатки теории Бора.
- 69. Квантовомеханическая модель атома водорода. Квантовые числа. Вырожденные состояния. Правила отбора.
- 70. Спонтанное и вынужденное излучение. Лазеры.
- 71. Энергетические зоны в кристаллах. Структура энергетических зон металлов, полупроводников и диэлектриков. Полупроводники (собственные и примесные). Структура энергетических зон примесных и собственных полупроводников.

Приложение 3

Вопросы на экзамены

Механика

- 1. Материальная точка. Системы отсчета. Кинематика поступательного движения. Траектория. Путь. Средняя скорость. Мгновенная скорость.
- 2. Среднее ускорение. Мгновенное ускорение. Касательное и нормальное ускорение. Равномерное и равноускоренное движение.
- 3. Движение тела, брошенного под углом к горизонту.
- 4. Виды взаимодействий в природе. Характеристики некоторых сил: сила тяжести и вес тела, силы трения и упругости.
- 5. Первый закон Ньютона. Инерциальные системы отсчета. Примеры.
- 6. Второй закон Ньютона. Дифференциальная форма второго закона Ньютона. Третий закон Ньютона. Границы применимости законов Ньютона. Сложение сил.
- 7. Определение механической работы (постоянной и меняющейся) силы. Графическое представление работы.
- 8. Кинетическая энергия. Связь кинетической энергии с работой. Примеры.
- 9. Консервативные силы. Потенциальное поле. Потенциальная энергия и ее связь с работой. Потенциальная энергия тела в поле тяжести Земли. Энергия сжатой пружины.
- 10. Механическая энергия. Закон сохранения механической энергии. Примеры.
- 11. Кинематика вращательного движения. Угловое перемещение, угловая скорость и угловое ускорение. Векторный характер величин. Частота и период вращения.
- 12. Определение момента силы. Плечо силы. Основное уравнение динамики вращательного движения.
- 13. Момент инерции абсолютно твердого тела (вычисления моментов инерции). Физический смысл момента инерции. Теорема Штейнера.
- 14. Определение момента импульса. Закон сохранения момента импульса. Примеры.
- 15. Кинетическая энергия вращающегося тела. Работа при вращательном движении. Энергия катящегося цилиндра.
- 16. Постулаты Эйнштейна. Преобразования Лоренца. Следствия из преобразований Лоренца. Одновременность.
- 17. Следствия из преобразований Лоренца. Лоренцево сокращение длины.
- 18. Следствия из преобразований Лоренца. Замедление времени. Интервал.
- 19. Релятивистская динамика. Релятивистская масса. Взаимосвязь энергии и массы.

Термодинамика

- 20. Основное уравнение молекулярно-кинетической теории идеального газа.
- 21. Идеальный газ. Газовые законы. Уравнение Менделеева-Клапейрона.
- 22. Закон Максвелла для распределения молекул по скоростям.
- 23. Барометрическая формула. Распределение Больцмана.
- 24. Число степеней свободы. Закон Больцмана о равнораспределении энергии по степеням свободы.
- 25. Внутренняя энергия идеального газа. Работа газа при расширении. Работа газа при различных процессах.
- 26. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
- 27. Теплоемкость газов. Уравнение Майера.
- 28. Круговой процесс. Обратимый, необратимый процесс. Цикл Карно и его КПД.
- 29. Статистические закономерности распределения молекул газа по объему. Энтропия и ее статистическое толкование. Изменение энтропии. Расчет изменения энтропии при различных процессах.

30. Взаимодействие молекул. Уравнение состояния реального газа. Изотермы реального газа. Внутренняя энергия реального газа

Электричество и постоянный ток

- 31. Закон Кулона. Применение закона Кулона в случае неточечных заряженных тел.
- 32. Электрическое поле. Напряженность электростатического поля. Принцип суперпозиции. Силовые линии.
- 33. Смещение (индукция) электростатического поля. Поток вектора смещения. Теорема Остроградского-Гаусса для электростатического поля. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной сферы.
- 34. Теорема Остроградского-Гаусса для электростатического поля.
- 35. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной плоскости.
- 36. Теорема Остроградского-Гаусса для электростатического поля.
- Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженного шара.
- 38. Работа сил электростатического поля по перемещению заряда. Циркуляция вектора напряженности электростатического поля
- 39. Потенциал электростатического поля. Эквипотенциальные поверхности.
- 40. Взаимосвязь напряженности и потенциала. Взаимное расположение силовых линий и эквипотенциальных поверхностей.
- 41. Виды диэлектриков. Вектор поляризации. Диэлектрическая восприимчивость
- 42. Электрическое поле в диэлектрике. Диэлектрическая проницаемость и ее связь с восприимчивостью.
- 43. Проводники в электростатическом поле. Конденсаторы. Электроемкость плоского конденсатора.
- 44. Энергия системы зарядов. Энергия электростатического поля.
- 45. Характеристики постоянного тока. Плотность тока. Закон Ома в дифференциальной форме. Сопротивление проводников
- 46. Закон Ома для участка цепи и для полной цепи. Электродвижущая сила источника тока.
- 47. Правила Кирхгофа для расчета электрических цепей.
- 48. Работа и мощность тока. Закон Джоуля-Ленца.
- 49. Классическая теория электропроводности.

Магнитное поле

- 50. Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-Лапласа для расчета индукции магнитного поля бесконечного, прямого проводника с током.
- 51. Закон полного тока (теорема о циркуляции вектора индукции магнитного поля). Применение закона полного тока для расчета поля бесконечно длинного соленоида. Поток вектора магнитной индукции. Теорема Остроградского-Гаусса для магнитного поля.
- 52. Сила Лоренца. Движение заряженной частицы в магнитном поле. Эффект Холла.
- 53. Сила Ампера. Взаимодействие параллельных токов.
- 54. Магнитные моменты электронов и атомов. Диамагнетизм. Магнетики.
- 55. Вектор намагниченности. Магнитная восприимчивость. Диа-, пара-магнетики. Магнитное поле в веществе. Магнитная проницаемость. Ферромагнетики.
- 56. Явления электромагнитной индукции. Вывод закона Фарадея-Ленца. Правило Ленца.
- 57. Самоиндукция. Индуктивность. Индуктивность бесконечно длинного соленоида. Энергия магнитного поля. Объемная плотность энергии.
- 58. Система уравнений Максвелла. Значение теории Максвелла.

Колебания

- 59. Гармонические колебания и их характеристики. Кинематика гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия гармонических колебаний (механических и электрических).
- 60. Дифференциальное уравнение гармонических колебаний пружинного и физического маятников. Период колебаний этих маятников.
- 61. Гармонические колебания в колебательном контуре. Формула Томсона.
- 62. Дифференциальное уравнение затухающих механических и электрических колебаний. Логарифмический декремент затухания.
- 63. Дифференциальное уравнение вынужденных механических колебаний и его решение. Резонансные кривые.
- 64. Переменный ток. Полное сопротивление цепи переменного тока. Последовательное и параллельное соединение.
- 65. Сложение колебаний одного направления одинаковой частоты. Векторные диаграммы. Сложение колебаний одного направления. Биения. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 66. Волновые процессы. Продольные и поперечные волны. Уравнение бегущей волны. Волновое уравнение. Волновой пакет. Групповая скорость.

Волновая и квантовая оптика. Квантовая механика

- 67. Электромагнитные волны. Характеристики световых волн. Интенсивность световой волны.
- 68. Когерентность световых волн. Интерференция света от двух источников. Интерференционные условия для разности фаз и разности хода.
- 69. Методы наблюдения интерференции света (бипризма Френеля, опыт Юнга)
- 70. Интерференция в тонких пленках. Вывод формулы для оптической разности хода лучей в тонкой пленке.
- 71. Виды дифракции. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция света на круглом отверстии, от круглого диска, на узкой щели, на дифракционной решетке.
- 72. Дифракция рентгеновских лучей. Условие Вульфа-Брэггов. Применение дифракции рентгеновского излучения.
- 73. Естественный и поляризованный свет. Закон Брюстера. Закон Малюса. Поляризация света при двойном лучепреломлении. Дихроизм. Призма Николя. Оптическая активность вещества.

- 74. Характеристики теплового излучения. Закон Кирхгофа. Закон Стефана- Больцмана. Закон смещения Вина. Закон Рэлея Джинса. Ультрафиолетовая катастрофа. Формула Планка. Законы теплового излучения и их получение из формулы Планка.
- 75. Законы фотоэффекта. Вольтамперная характеристика фототока. Задерживающий потенциал. Ток насыщения. Работа выхода. Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта.
- 76. Фотоны. Давление света Эффект Комптона. Корпускулярно-волновой дуализм света.
- 77. Опыт Резерфорда. Постулаты Бора.
- 78. Корпускулярно-волновой дуализм вещества. Длина волны де-Бройля. Экспериментальные доказательства волновых свойств частиц.
- 79. Соотношение неопределенностей Гейзенберга. Вывод соотношения неопределенностей на основе волновых свойств частип.
- 80. Уравнение Шредингера. Физический смысл пси-функции. Решение уравнения Шредингера для бесконечно-глубокой потенциальной ямы.
- 81. Потенциальный барьер. Туннельный эффект. Гармонический осциллятор.
- 82. Закономерности в атомных спектрах. Формула Бальмера. Боровская модель атома водорода. Достоинства и недостатки теории Бора.
- 83. Квантовомеханическая модель атома водорода. Квантовые числа. Вырожденные состояния. Правила отбора.
- 84. Спонтанное и вынужденное излучение. Лазеры.
- 85. Энергетические зоны в кристаллах. Структура энергетических зон металлов, полупроводников и диэлектриков. Полупроводники (собственные и примесные). Структура энергетических зон примесных и собственных полупроводников.

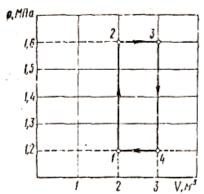
Приложение 4

Задачи к экзамену приведены в приложении.

1 Механика.

- 2. 1. Точка движется по окружности радиусом R = 4 м. Закон ее движения выражается уравнением $s = A + Bt^2$, где A = 8 м, B = -2 м/с². Определить момент времени t, когда нормальное ускорение a_n точки равно 9 м/с². Найти скорость v, тангенциальное a_{τ} и полное a ускорения точки в тот же момент времени t. [1,5 c; -6 м/c; -4 м/c²; 9,84 м/c²].
- 3. 2. Две материальные точки движутся согласно уравнениям $x_1 = A_1t + B_1t^2 + C_1t^3$ и $x_2 = A_2t + B_2t^2 + C_2t^3$, где $A_1 = 4$ м/с, $B_1 = 8$ м/с, $C_1 = -16$ м/с, $C_2 = 1$ м/с, $C_3 = 1$ м/с. В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v_1 и v_2 точек в этот момент. [0,235 c; 5,1 м/с; 0,286 м/с].
- 4. 3. Шар массой m = 10 кг сталкивается с шаром массой $m_2 = 4$ кг. Скорость первого шара $v_1 = 4$ м/с, второго $v_2 = 12$ м/с. Найти общую скорость u шаров после удара в двух случаях: 1) малый шар нагоняет большой шар, движущийся в том же направлении; 2) шары движутся навстречу друг другу. Удар считать прямым, центральным, неупругим. [6,28 м/c; -0,572 м/c].
- 5. В лодке массой M = 240 кг стоит человек массой m = 60 кг. Лодка плывет со скоростью v = 2 м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью u = 4 м/с (относительно лодки). Найти скорость лодки после прыжка человек?: 1) вперед по движению лодки; 2) в сторону, противоположную движению лодки. [1 м/с; 3 м/с].
- 6. Человек, стоящий в лодке, сделал шесть шагов вдоль нее и остановился. На сколько шагов передвинулась лодка, если масса лодки в два раза больше (меньше) массы человека? [2 шага; 4 шага].
- 7. 6. Из пружинного пистолета выстрелили пулькой, масса которой $m = 5 \, \Gamma$. Жесткость пружины $k = 1,25 \, \text{кH/m}$. Пружина была сжата на $\Delta l = 8 \, \text{см}$. Определить скорость пульки при вылете ее из пистолета. [40 м/с].
- 8. 7. Шар массой $m_1 = 200$ г, движущийся со скоростью $v_1 = 10$ м/с, сталкивается с неподвижным шаром массой $m_2 = 800$ г. Удар прямой, центральный, абсолютно упругий. Определить скорости шаров после столкновения. [—6 м/с; 4 м/с].
- 9. Шар, двигавшийся горизонтально, столкнулся с неподвижным шаром и передал ему 64% своей кинетической энергии. Шары абсолютно упругие, удар прямой, центральный. Во сколько раз масса второго шара больше массы первого? [В 4 раза].
- 10. Цилиндр, расположенный горизонтально, может вращаться вокруг оси, совпадающей с осью цилиндра. Масса цилиндра $m_1 = 12$ кг. На цилиндр намотали шнур, к которому привязали гирю массой $m_2 = 1$ кг. С каким ускорением будет опускаться гиря? Какова сила натяжения шнура во время движения гири? [1,4 м/c²; 8,4 H]
- 11. Через блок, выполненный в виде колеса, перекинута нить, к концам которой привязаны грузы массами $m_1 = 100$ г и $m_2 = 300$ г. Массу колеса M = 200 г считать равномерно распределенной по ободу, массой спиц пренебречь. Определить ускорение, с которым будут двигаться грузы, и силы натяжения нити по обе стороны блока. [3,27 м/с²; 1,31 H; 1,96 H].
- 12. Двум одинаковым маховикам, находящимся в покое, сообщили одинаковую угловую скорость $\omega = 63$ рад/с и предоставили их самим себе. Под действием сил трения маховик остановился через одну минуту, а второй сделал до полной остановки N = 360 оборотов. У какого маховика тормозящий момент был больше и во сколько раз? [У первого больше в 1,2 раза].
- 13. Шар скатывается с наклонной плоскости высотой h = 90 см. Какую линейную скорость будет иметь центр шара в тот момент, когда шар скатится с наклонной плоскости? [3,55 м/с].
- 14. На верхней поверхности горизонтального диска, который может вращаться вокруг вертикальной оси, проложены по окружности радиусом r = 50 см рельсы игрушечной железной дороги. Масса диска M = 10 кг, его радиус R = 60см. На рельсы неподвижного диска был поставлен заводной паровозик массой m = 1 кг и выпущен из рук. Он начал двигаться относительно рельсов со скоростью v = 0.8 м/с. С какой угловой скоростью будет вращаться диск? [0,195 рад/с].

- 15. Платформа в виде диска вращается по инерции около вертикальной оси с частотой $n_1 = 14$ мин⁻¹. На краю платформы стоит человек. Когда человек перешел в центр платформы, частота возросла до $n_2 = 25$ мин⁻¹. Масса человека m = 70кг. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки. [210 кг].
- 16. Искусственный спутник обращается вокруг Земли по круговой орбите на высоте H = 3200 км над поверхностью Земли. Определить линейную скорость спутника. [6,45 км/с].
- 17. Точка совершает гармонические колебания. В некоторый момент времени смещение точки x=5 см, скорость ее v=20 см/с и ускорение a=80 см/с 2 . Найти циклическую частоту и период колебаний, фазу колебаний в рассматриваемый момент времени и амплитуду колебаний. [4 с , 1.57 с; π /4; 7,07 см].
- 18. Точка совершает гармонические колебания, уравнение которых имеет вид $x = A \sin \omega t$, где A = 5 см, $\omega = 2$ с⁻¹. Найти момент времени (ближайший к началу отсчета), в который потенциальная энергия точки $\Pi = -10^{-4}$ Дж, а возвращающая сила $F = 5 \cdot 10^{-3}$ Н. Определить также фазу колебаний в этот момент времени. [2,04 c; 4,07 рад].
- 19. Два гармонических колебания, направленных по одной прямой, имеющих одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз складываемых колебаний. [120° или 240°].
- 20. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикуля рным направлениям и выражаемых уравнениями $x = A_1 \cos \omega_1 t$ и $y = A_1 \cos \omega_2 (t + \tau)$, где A = 4 см, $\omega_1 = \pi$ с⁻¹, $A_2 = 8$ см, $\omega_2 = \pi$ с⁻¹, $\tau = 1$ с. Найти уравнение траектории и начертить ее с соблюдением масштаба. [2x + y = 0].
- 21. Поперечная волна распространяется вдоль упругого шнура со скоростью v=15 м/с. Период колебаний точек шкура T=1,2с. Определить разность фаз $\Delta \varphi$ колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях $x_1=20$ м и $x_2=30$ м. $[200^\circ]$.
- 22. Тело брошено вертикально вверх с начальной скоростью $v_0 = 4$ м/с. Когда оно достигло верхней точки полета из того же начального пункта, с той же начальной скоростью v_0 вертикально вверх брошено второе тело. На каком расстоянии h от начального пункта встретятся тела? Сопротивление воздуха не учитывать.
- 23. Материальная точка движется прямолинейно с ускорением $a = 5 \text{ м/c}^2$. Определить, на сколько путь, пройденный точкой в n-ю секунду, будет больше пути, пройденного в предыдущую секунду. Принять $v_0 = 0$.
- 24. Две автомашины движутся по дорогам, угол между которыми $\alpha = 60^{\circ}$. Скорость автомашин $v_1 = 54$ км/ч и $v_2 = 72$ км/ч. С какой скоростью v удаляются машины одна от другой?
- 25. Материальная точка движется прямолинейно с начальной скоростью $v_0 = 8$ м/с и постоянным ускорением a = -3 м/с². Определить, во сколько раз путь Δs , пройденный материальной точкой, будет превышать модуль ее перемещения Δr спустя t = 2 с после начала отсчета времени.
- 26. Велосипедист ехал из одного пункта в другой. Первую треть пути он проехал со скоростью $v_1 = 18$ км/ч. Далее половину оставшегося времени он ехал со скоростью $v_2 = 22$ км/ч, после чего до конечного пункта он шел пешком со скоростью = 5 км/ч. Определить среднюю скорость < v > велосипедиста.
- 27. Тело брошено под углом $\alpha = 30^{\circ}$ к горизонту со скоростью $v_0 = 30$ м/с. Каковы будут нормальное a_n и тангенциальное a_{τ} ускорения тела через время t = 1 с после начала движения?
- 28. Материальная точка движется по окружности с постоянной угловой скоростью $\omega = \pi/6$ рад/с. Во сколько раз путь Δs , пройденный точкой за время t=4 c, будет больше модуля ее перемещения Δr ? Принять, что в момент начала отсчета времени радиус-вектор r, задающий положение точки на окружности, относительно исходного положения был повернут на угол $\varphi_0 = \pi/3$ рад.
- 29. Материальная точка движется в плоскости xy согласно уравнениям $x = A_1 + B_1t + C_1t^2$ и $y = A_2 + B_2t + C_2t^2$, где $B_1 = 7$ м/с, $C_1 = -2$ м/с 2 , $B_2 = -1$ м/с, $C_2 = 0.2$ м/с 2 . Найти модули скорости и ускорения точки в момент времени t = 5 с.
- 30. По краю равномерно вращающейся с угловой скоростью $\omega = 1$ рад/с платформы идет человек и обходит платформу за время t = 9.9 с. Каково наибольшее ускорение a движения человека относительно Земли? Принять радиус платформы R = 2 м.
- 31. Точка движется по окружности радиусом R=30 см с постоянным угловым ускорением ε . Определить тангенциальное ускорение a_{τ} точки, если известно, что за время t=4 c она совершила три оборота и в конце третьего оборота ее нормальное ускорение $a_{\rm n}=2,7$ м/с².
- 32. При горизонтальном полете со скоростью v = 250 м/с снаряд массой m = 8 кг разорвался на две части. Большая часть массой $m_1 = 6$ кг получила скорость $u_1 = 400$ м/с в направлении полета снаряда. Определить модуль и направление скорости u_2 меньшей части снаряда.
- 33. С тележки, свободно движущейся по горизонтальному пути со скоростью $v_1=3\,$ м/с, в сторону, противоположную движению тележки, прыгает человек, после чего скорость тележки изменилась и стала равной $u_1=4\,$ м/с. Определить горизонтальную составляющую скорости u_x человека при прыжке относительно тележки. Масса тележки $m_1=210\,$ кг, масса человека $m_2=70\,$ кг.
- 34. Орудие, жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом $\alpha = 30^{\circ}$ к линии горизонта. Определить скорость u_2 отката платформы, если снаряд вылетает со скоростью $u_1 = 480$ м/с. Масса платформы с орудием и снарядами $m_2 = 18$ т, масса снаряда $m_1 = 60$ кг.
- 35. Человек массой $m_1 = 70$ кг, бегущий со скоростью $v_1 = 9$ км/ч, догоняет тележку массой $m_2 = 190$ кг, движущуюся со скоростью $v_2 = 3.6$ км/ч, и вскакивает на нее. С какой скоростью станет двигаться тележка с человеком? С какой скоростью будет двигаться тележка с человеком, если человек до прыжка бежал навстречу тележке?
- 36. Конькобежец, стоя на коньках на льду, бросает камень массой $m_1 = 2.5$ кг под углом $\alpha = 30^\circ$ к горизонту со скоростью v = 10 м/с. Какова будет начальная скорость v_0 движения конькобежца, если масса его $m_2 = 60$ кг? Перемещением конькобежца во время броска пренебречь.
- 37. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса его $m_1 = 60$ кг, масса доски $m_2 = 20$ кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) = 1 м/с? Массой колес и трением пренебречь.

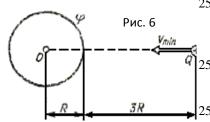

- 38. Снаряд, летевший со скоростью v = 400 м/с, а верхней точке траектории разорвался на два осколка. Меньший осколок, масса которого составляет 40% от массы снаряда, полетел в противоположном направлении со скоростью $u_1 = 150$ м/с. Определить скорость u_2 большего осколка.
- 39. Две одинаковые лодки массами m=200 кг каждая (вместе с человеком и грузами, находящимися в лодках) движутся параллельными курсами навстречу друг другу с одинаковыми скоростями v=1 м/с. Когда лодки поравнялись, то с первой лодки на вторую и со второй на первую одновременно перебрасывают грузы массами $m_1=20$ кг. Определить скорости u_1 и u_2 лодок после перебрасывания грузов.
- 40. На сколько переместится относительно берега лодка длиной l = 3,5 м и массой $m_1 = 200$ кг, если стоящий на корме человек массой $m_2 = 80$ кг переместится на нос лодки? Считать лодку расположенной перпендикулярно берегу.
- 41. Лодка длиной l = 3 м и массой m = 120 кг стоит на спокойной воде. На носу и корме находятся два рыбака массами $m_1 = 60$ кг и $m_2 = 90$ кг. На сколько сдвинется лодка относительно воды, если рыбаки поменяются местами?
- 42. В деревянный шар массой $m_1 = 8$ кг, подвешенный на нити длиной l = 1,8 м, попадает горизонтально летящая пуля массой $m_2 = 4$ г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол $\alpha = 3^{\circ}$? Размером шара пренебречь. Удар пули считать прямым, центральным.
- 43. По небольшому куску мягкого железа, лежащему на наковальне массой $m_1 = 300$ кг, ударяет молот массой $m_2 = 8$ кг. Определить КПД η удара, если удар неупругий. Полезной считать энергию, затраченную на деформацию куска железа.
- 44. Шар массой $m_1 = 1$ кг движется со скоростью $v_1 = 4$ м/с и сталкивается с шаром массой $m_2 = 2$ кг, движущимся навстречу ему со скоростью $v_2 = 3$ м/с. Каковы скорости u_1 и u_2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным.
- 45. Шар массой $m_1 = 3$ кг движется со скоростью $v_1 = 2$ м/с и сталкивается с покоящимся шаром массой $m_2 = 5$ кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно неупругим, прямым, центральным.
- 46. Определить КПД η неупругого удара бойка массой $m_1 = 0.5$ т, падающего на сваю массой $m_2 = 120$ кг. Полезной считать энергию, затраченную на вбивание сваи.
- 47. Шар массой $m_1 = 4$ кг движется со скоростью $v_1 = 5$ м/с и сталкивается с шаром массой $m_2 = 6$ кг, который движется ему навстречу со скоростью $v_2 = 2$ м/с. Определить скорости u_1 и u_2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.
- 48. Из ствола автоматического пистолета вылетела пуля массой $m_1 = 10$ г со скоростью v = 300 м/с. Затвор пистолета массой $m_2 = 200$ г прижимается к стволу пружиной, жесткость которой k = 25 кH/м. На какое расстояние отойдет затвор после выстрела? Считать, что пистолет жестко закреплен.
- 49. Шар массой $m_1 = 5$ кг движется со скоростью $v_1 = 1$ м/с и сталкивается с покоящимся шаром массой $m_2 = 2$ кг. Определить скорости u_1 и u_2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.
- 50. Из орудия, не имеющего противооткатного устройства, производилась стрельба в горизонтальном направлении; Когда орудие было неподвижно закреплено, снаряд вылетел со скоростью $v_1 = 600$ м/с, а когда орудию дали возможность свободно откатываться назад, снаряд вылетел со скоростью $v_2 = 580$ м/с. С какой скоростью откатилось при этом орудие?
- 51. Шар массой $m_1 = 2$ кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m_2 большего шара. Удар считать абсолютно упругим, прямым, центральным.
- 52. Определить работу растяжения двух соединенных последовательно пружин жесткостями $k_1 = 400$ H/м и $k_2 = 250$ H/м, если первая пружина при этом растянулась на $\Delta l = 2$ см.
- 53. Из шахты глубиной h = 600 м поднимают клеть массой $m_1 = 3.0$ т на канате, каждый метр которого имеет массу m = 1.5 кг. Какая работа A совершается при поднятии клети на поверхность Земли? Каков коэффициент полезного действия η подъемного устройства?
- 54. Пружина жесткостью k = 500 Н/м сжата силой F = 100 Н. Определить работу A внешней силы, дополнительно сжимающей пружину еще на $\Delta l = 2$ см.
- 55. Две пружины жесткостью $k_1=0.5$ кН/м и $k_2=1$ кН/м скреплены параллельно. Определить потенциальную энергию Π данной системы при абсолютной деформации $\Delta l=4$ см.
- 56. Какую нужно совершить работу A, чтобы пружину жесткостью k = 800 H/м, сжатую на x = 6 см, дополнительно сжать на $\Delta x = 8$ см?
- 57. Если на верхний коней вертикально расположенной спиральной пружины положить груз, то пружина сожмется на $\Delta l = 3$ мм. На сколько сожмет пружину тот же груз, упавший на конец пружины с высоты h = 8 см?
- 58. Из пружинного пистолета с пружиной жесткостью k = 150 Н/м был произведен выстрел пулей массой m = 8 г. Определить скорость v пули при вылете ее из пистолета, если пружина была сжата на $\Delta x = 4$ см.
- 59. Налетев на пружинный буфер, вагон массой m=16 т, двигавшийся со скоростью v=0.6 м/с, остановился, сжав пружину на $\Delta l=8$ см. Найти общую жесткость k пружин буфера.
- 60. Цепь длиной l = 2 м лежит на столе, одним концом свисая со стола. Если длина свешивающейся части превышает 1/3 l, то цепь соскальзывает со стола. Определить скорость v цепи в момент ее отрыва от стола.
- 61. Какая работа A должна быть совершена при поднятии с земли материалов для постройки цилиндрической дымоходной трубы высотой h=40 м, наружным диаметром D=3,0 м и внутренним диаметром d=2,0 м? Плотность материала ρ принять равной $2,8\cdot10^3$ кг/м³.
- 62. Шарик массой m = 60 г, привязанный к концу нити длиной $l_1 = 1,2$ м, вращается с частотой $n_1 = 2c^{-1}$, опираясь на горизонтальную плоскость. Нить укорачивается, приближая шарик к оси до расстояния $l_2 = 0,6$ м. С какой частотой n_2 будет при этом вращаться шарик? Какую работу A совершает внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.
- 63. По касательной к шкиву маховика в виде диска диаметром D = 75 см и массой m = 40 кг приложена сила F = 1 кH. Определить угловое ускорение ε и частоту вращения n маховика через время t = 10 c после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь.

- 64. На обод маховика диаметром D=60 см намотан шнур, к концу которого привязан груз массой m=2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время t=3 с приобрел угловую скорость $\omega=9$ рад/с.
- 65. Нить с привязанными к ее концам грузами массами $m_1 = 50$ г и $m_2 = 60$ г перекинута через блок диаметром D = 4 см. Определить момент инерции J блока, если под действием силы тяжести грузов он получил угловое ускорение $\varepsilon = 1,5$ рад/с². Трением и проскальзыванием нити по блоку пренебречь.
- 66. Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению $\varphi = At + Bt^3$, где A = 2 рад/с, B = 0.2 рад/с 3 . Определить вращающий момент M, действующий на стержень через время t = 2 c после начала вращения, если момент инерции стержня J = 0.048 кг·м 2 .
- 67. По горизонтальной плоскости катится диск со скоростью v = 8 м/с. Определить коэффициент сопротивлений, если диск, будучи предоставленным самому себе, остановился, пройдя путь s = 18 м.
- 68. Определить момент силы M, который необходимо приложить к блоку, вращающемуся с частотой n=12 c^{-1} , чтобы он остановился в течение времени $\Delta t=8$ c. Диаметр блока D=30 см. Массу блока m=6 кг считать равномерно распределенной по ободу.
- 69. Блок, имеющий форму диска массой m = 0.4 кг, вращается под действием силы натяжения нити, к концам которой подвешены грузы массами $m_1 = 0.3$ кг и $m_2 = 0.7$ кг. Определить силы натяжения T_1 и T_2 нити по обе стороны блока.
- 70. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой вдоль вертикали вниз. Определить коэффициент f трения между поверхностями груза и стола, если массы каждого груза и масса блока одинаковы и грузы движутся с ускорением $a = 5.6 \text{ м/c}^2$. Проскальзыванием нити по блоку и силой трения, действующей на блок, пренебречь.
- 71. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами $m_1 = 0.2$ кг и $m_2 = 0.3$ кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0.4 кг, а его ось движется вертикально вверх с ускорением a = 2 м/с²? Силами трения и проскальзывания нити по блоку пренебречь.
- 72. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой m=5 кг каждая. Расстояние от каждой гири до оси скамьи l=70 см. Скамья вращается с частотой $n_1=1$ c^{-1} . Как изменится частота вращения скамьи и какую работу A произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до $l_2=20$ см? Момент инерции человека и скамьи (вместе) относительно оси J=2,5 кг· м².
- 73. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью $\omega_1 = 4$ рад/с. С какой угловой скоростью ω_2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J = 5 кг·м². Длина стержня l = 1,8 м, масса m = 6 кг. Считать, что центр масс стержня с человеком находится на оси платформы.
- 74. Платформа в виде диска диаметром D=3м и массой $m_1=180$ кг может вращаться вокруг вертикальной оси. С какой угловой скоростью ω_1 будет вращаться эта платформа, если по ее краю пойдет человек массой $m_2=70$ кг со скоростью v=1,8 м/с относительно платформы?
- 75. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол ϕ повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на платформе) точку? Масса платформы $m_1 = 280$ кг, масса человека $m_2 = 80$ кг.
- 76. На скамье Жуковского стоит человек и держит в руке за ось велосипедное колесо, вращающееся вокруг своей оси с угловой скоростью $\omega_1 = 25$ рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи Жуковского. С какой скоростью ω_2 станет вращаться скамья, если повернуть колесо вокруг горизонтальной оси на угол $\alpha = 90^{\circ}$? Момент инерции человека и скамьи J равен 2,5 кг·м², момент инерции колеса $J_0 = 0.5$ кг·м².
- 77. Однородный стержень длиной l=1,0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой $m_1=7$ г, летящая перпендикулярно стержню и его оси. Определить массу M стержня, если в результате попадания пули он отклонится на угол $\alpha=60^\circ$. Принять скорость пули v=360 м/с.
- 78. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой $n_1 = 8$ мин⁻¹, стоит человек массой $m_1 = 70$ кг. Когда человек перешел в центр платформы, она стала вращаться с частотой $n_2 = 10$ мин⁻¹. Определить массу m_2 платформы. Момент инерции человека рассчитывать как для материальной точки.
- 79. На краю неподвижной скамьи Жуковского диаметром D = 0.8 м и массой $m_1 = 6$ кг стоит человек массой $m_2 = 60$ кг. С какой угловой скоростью ω начнет вращаться скамья, если человек поймает летящий на него мяч массой m = 0.5 кг? Траектория мяча горизонтальна и проходит на расстоянии r = 0.4 м от оси скамьи. Скорость мяча v = 5 м/с.
- 80. Горизонтальная платформа массой $m_1 = 150$ кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n = 8 мин⁻¹. Человек, массой $m_2 = 70$ кг стоит при этом на краю платформы. С какой угловой скоростью ω начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым, однородным диском, а человека материальной точкой.
- 81. Однородный стержень длиной l=1,0 м и массой M=0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на $^2/_3 l$, абсолютно упруго ударяет пуля массой m=5 кг, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол $\alpha=60^\circ$. Определить скорость пули
- 82. Определить напряженность G гравитационного поля на высоте h = 1000 км над поверхностью Земли. Считать известными ускорение g свободного падения у поверхности Земли и ее радиус R.
- 83. Какая работа A будет совершена силами гравитационного поля при падении на Землю тела массой m=2 кг: 1) с высоты h=1000 км; 2) из бесконечности?
- 84. Из бесконечности на поверхность Земли падает метеорит массой m = 30 кг. Определить работу A, которая при этом будет совершена силами гравитационного поля Земли. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.
- 85. С поверхности Земли вертикально вверх пущена ракета со скоростью v = 5 км/с. На какую высоту она поднимется?

- 86. По круговой орбите вокруг Земли обращается спутник с периодом T = 90 мин. Определить высоту спутника. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.
- 87. На каком расстоянии от центра Земли находится точка, в которой напряженность суммарного гравитационного поля Земли и Луны равна нулю? Принять, что масса Земли в 81 раз больше массы Луны и что расстояние от центра Земли до центра Луны равно 60 радиусам Земли.
- 88. Спутник обращается вокруг Земли по круговой орбите на высоте h = 520 км. Определить период обращения спутника. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.
- 89. Определить линейную и угловую скорости спутника Земли, обращающегося по круговой орбите на высоте A = 1000 км. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.
- 90. Какова масса Земли, если известно, что Луна в течение года совершает 13 обращений вокруг Земли и расстояние от Земли до Луны рано $3.84 \cdot 10^8$ м?
- 91. Во сколько раз средняя плотность земного вещества отличается от средней плотности лунного? Принять, что радиус R_3 Земли в 390 раз больше радиуса $R_{\mathcal{I}}$ Луны и вес тела на Луне в 6 раз меньше веса тела на Земле.
- 92. На стержне длиной l = 30 см укреплены два одинаковых грузика: один в середине стержня, другой на одном из его концов. Стержень с грузами колеблется около горизонтальной оси, проходящем через свободный конец стержня. Определить приведенную длину L и период T простых гармонических колебаний данного физического маятника. Массой стержня пренебречь.
- 93. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых $x = A_1 \sin \omega_1 t$ и $y = A_2 \cos \omega_2 t$, где $A_1 = 8$ см, $A_2 = 4$ см, $\omega_1 = \omega_2 = 2$ c^{-1} . Написать уравнение траектории и построить ее. Показать направление движения точки.
- 94. Точка совершает простые гармонические колебания, уравнение которых $x=A\sin \omega t$, где A=5 см, $\omega=2$ с⁻¹. В момент времени, когда точка обладала потенциальной энергией $\Pi=0,1$ мДж, на нее действовала возвращающая сила F=5 мН. Найти этот момент времени t.
- 95. Определить частоту v простых гармонических колебаний диска радиусом R = 20 см около горизонтальной оси, проходящей через середину радиуса диска перпендикулярно его плоскости.
- 96. Определить период T простых гармонических колебаний диска радиусом R = 40 см около горизонтальной оси, проходящей через образующую диска.
- 97. Определить период T колебаний математического маятника, если его модуль максимального перемещения $\Delta r = 18$ см и максимальная скорость $v_{\text{max}} = 16$ см/с.
- 98. Материальная точка совершает простое гармонические колебания так, что в начальный момент времени смещение $x_0 = 4$ см, а скорость $v_0 = 10$ см/с. Определить амплитуду A и начальную фазу ϕ_0 колебаний, если их период T = 2 с.
- 99. Складываются два колебания одинакового направления и одинакового периода $x_1 = A_1 \sin \omega_1 t$ и $x_2 = A_2 \sin(\omega_2(t+\tau))$, где $A_1 = A_2 = 3$ см, $\omega_1 = \omega_2 = \pi c^{-1}$, $\tau = 0.5$ с. Определить амплитуду A и начальную фазу ϕ_0 результирующего колебания. Написать его уравнение. Построить векторную диаграмму для момента времени t = 0.
- 100.На гладком горизонтальном столе лежит шар массой M=200 г, прикрепленный к горизонтально расположенной легкой пружине с жесткостью k=500 Н/м. В шар попадает пуля массой m=10 г, летящая со скоростью v=300 м/с, и застревает в нем. Пренебрегая перемещением шара во время удара и сопротивлением воздуха, определить амплитуду A и период T колебаний шара.
- 101.Шарик массой m = 60 г колеблется с периодом T = 2 c. В начальный момент времени смещение шарика $x_0 = 4,0$ см и он обладает энергией E = 0,02 Дж. Записать уравнение простого гармонического колебания шарика и закон изменения возвращающей силы е течением времени.

Молекулярная физика и термодинамика.

- 102.Вычислить массу m атома азота. [2,33·10⁻²⁶ кг]
- 103. Плотность газа ρ при давлении p = 96 кПа и температуре t = 0°C равна 1,35 г/л. Найти молярную массу M газа. [32·10⁻³ кг/моль]
- 104. Определить давления p_1 и p_2 газа содержащего $N=10^9$ молекул и имеющего объем V=1 см³, при температурах $T_1=3$ К и $T_2=1000$ К. [41,4 нПа; 13,8 мкПа]
- 105. При температуре t = 35°C и давлении p = 708 кПа плотность некоторого газа $\rho = 12,2$ кг/м³. Определить относительную молекулярную массу M_r газа. [44,1]Какой объем V занимает смесь азота массой $m_1 = 1$ кг и гелия массой $m_2 = 1$ кг при нормальных условиях? [6,4 м³]
 - В баллоне вместимостью V=15 л находится смесь, содержащая $m_1=10$ г водорода, $m_2=64$ г водяного пара и $m_3=60$ г оксида углерода. Температура смеси $t=27^\circ$. Определить давление. [1,69 МПа]
- 106. Найти полную кинетическую энергию, а также кинетическую энергию вращательного движения одной молекулы аммиака NH_3 при температуре $t=27^{\circ}C$. $[1,24\cdot 10^{-20}\ \text{Дж};\,6,2\cdot 10^{-21}\ \text{Дж}]$
- 107. Определить удельные теплоемкости $c_{\rm V}$ и $c_{\rm P}$ газообразного оксида углерода СО. [743 Дж/(кг-К); 1,04 кДж/(кг-К)]
- 108.Смесь газа состоит из кислорода O_2 с массовой долей = 85% и озона O_3 с массовой долей ω_1 = 15%. Определить удельные теплоемкости c_V и c_P этой газовой смеси. [629 Дж/(кг·К); 877 Дж/(кг·К)]
- 109. Газовая смесь состоит из азота массой $m_1 = 3$ кг и водяного пара массой $m_2 = 1$ кг. Принимая эти газы за идеальные, определить удельные теплоемкости c_V и c_P газовой смеси. [902 Дж/(кг·К); 1,24 кДж/(кг·К)]
- 110. Молекула газа состоит из двух атомов; разность удельных теплоемкостей газа при постоянном давлении и постоянном объеме равна 260 Дж/(кг·К). Найти молярную массу газа и его удельные теплоемкости c_V и c_P . [32·10⁻³ кг/моль; 650 Дж/(кг·К); 910 Дж/(кг·К)]
- 111. Найти среднюю длину <*l*> свободного пробега молекулы водорода при p = 133 мПа и t = 173°C. [4,4 см].
- 112. Один киломоль двухатомного идеального газа совершает замкнутый цикл, график которого изображен на рисунке. Определить: 1) теплоту Q_1 , полученную


- от теплоотдатчика; 2) теплоту Q_2 , переданную теплоприемнику: 3) работу A, совершаемую газом за один цикл; 4) термический КПД η цикла. {7,61 МДж; 7,19 МДж; 0,4 МДж; 5,3%]
- 113.Водород занимает объем V = 10 м при давлении $p_1 = 0,1$ МПа. Его нагрели при постоянном объеме до давления $p_2 = 0,3$ МПа. Определить изменение ΔU внутренней энергии газа, работу A, совершенную им, и теплоту Q, сообщенную газу. [5 МДж; 0; 5 МДж]
- 114. Кислород при неизменном давлении p=80 кПа нагревается. Его объем увеличивается от $V_1=1$ м³ до $V_2=3$ м³. Определить изменение ΔU внутренней энергии кислорода, работу A, совершенную им при расширении, а также теплоту Q, сообщенную газу. [400 кДж; 160 кДж; 560 кДж]
- 115. В цилиндре под поршнем находится азот, имеющий массу m=0.6 кг и занимающий объем $V_1=1.2$ м³, при температуре $T_1=560$ К. В результате нагревания газ расширился и занял объем $V_2=4.2$ м³, причем температура осталась неизменной. Найти изменение ΔU внутренней энергии газа, совершенную им работу A и теплоту Q, сообщенную газу. [0; 126 кДж; 126 кДж]
- 116.В бензиновом автомобильном двигателе степень сжатия горючей смеси равна 6,2. Смесь засасывается в цилиндр при температуре t_1 = 15 °C. Найти, температуру t_2 горючей смеси в конце такта сжатия. Горючую смесь рассматривать как двухатомный идеальный газ; процесс считать адиабатным. [324 °C]
- 117. Газ совершает цикл Карно. Температура теплоотдатчика в три раза выше температуры теплоприемника. Теплоотдатчик передал газу $Q_1 = 41.9$ кДж. теплоты. Какую работу совершил газ? [28,1 кДж]
- 118. Какую энергию надо затратить, чтобы выдуть мыльный пузырь диаметром d = 12см? Каково будет добавочное давление внутри этого пузыря? [3,62 мДж; 2,66 Па]
- 119. На нижнем конце трубки диаметром d = 0,2 см повисла шарообразная капля воды. Найти диаметр этой капли. [4,42 мм]
- 120.В сосуд с ртутью частично погружены две вертикально расположенные и параллельные друг другу стеклянные пластинки. Расстояние между пластинками d=1 мм. Определить разность Δh уровней ртути в сосуде и между пластинками, краевой угол принять равным 138°. [-5,57 мм]
- 121. Определить количество вещества v и число N молекул кислорода массой m=0,5 кг.
- 122. Сколько атомов содержится в ртути: 1) количеством вещества v = 0,2 моль; 2) массой m = 1 г?
- 123. Вода при температуре t = 4 °C занимает объем V = 1 см³. Определить количество вещества v и число N молекул воды.
- 124. Найти молярную массу M и массу $m_{\scriptscriptstyle \rm M}$ одной молекулы поваренной соли.
- 125. Определить массу $m_{\rm M}$ одной молекулы углекислого газа.
- 126. Определить концентрацию n молекул кислорода, находящегося в сосуде вместимостью V=2 л. Количество вещества v кислорода равно 0.2 моль.
- 127. Определить количество вещества v водорода, заполняющего сосуд объемом V=3 л, если концентрация молекул газа в сосуде $n=2\cdot 10^{18}$ м⁻³.
- 128.В баллоне вместимостью V = 3 л содержится кислород массой m = 10 г. Определить концентрацию n молекул газа.
- 129. Определить относительную молекулярную массу Мг: 1) воды; 2) углекислого газа; 3) поваренной соли.
- 130. Определить количество вещества v и число N молекул азота массой m=0,2 кг.
- 131.В цилиндр длиной l=1,6 м, заполненный воздухом при нормальном атмосферном давлении p_0 , начали медленно вдвигать поршень площадью основания $S=200~{\rm cm}^2$. Определить силу F, действующую на поршень, если его остановить на расстоянии $l_1=10~{\rm cm}$ от дна цилиндра.
- 132. В баллоне находится газ при температуре $T_1 = 400$ К. До какой температуры T_2 надо нагреть газ, чтобы его давление увеличилось в 1,5 раза?
- 133. Баллон вместимостью V=20 л заполнен азотом при температуре T=400К. Когда часть газа израсходовали, давление в баллоне понизилось на $\Delta p=200$ кПа. Определить массу m израсходованного газа. Процесс считать изотермическим.
- 134.В баллоне вместимостью V = 15 л находится аргон под давлением $p_1 = 600$ кПа и при температуре T = 300 К. Когда из баллона было взято некоторое количество газа, давление в баллоне понизилось до $p_2 = 400$ кПа, а температура установилась T = 260 К. Определить массу m аргона, взятого из баллона.
- 135. Два сосуда одинакового объема содержат кислород. В одном сосуде давление $p_1=2$ МПа и температура $T_1=800$ К, в другом $p_2=2,5$ МПа, $T_2=200$ К. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры T=200 К. Определить установившееся в сосудах давление p.
- 136. Вычислить плотность ρ азота, находящегося в баллоне под давлением p=2 МПа и имеющего температуру T=400 К.
- 137. Определить относительную молекулярную массу Mr газа, если при температуре T = 154 К и давлении p = 2.8 МПа он имеет плотность $\rho = 6.1$ кг/м³.
- 138. Найти плотность ρ азота при температуре T = 400 K и давлении p = 2 МПа.
- 139.В сосуде вместимостью V = 40 л находится кислород при температуре T = 300К. Когда часть газа израсходовали, давление в баллоне понизилось на $\Delta p = 100$ кПа. Определить массу m израсходованного кислорода. Процесс считать изотермическим.
- 140. Определить плотность ρ водяного пара, находящегося под давлением p = 2.5 кПа и имеющего температуру T = 250 К.
- 141.Определить внутреннюю энергию U водорода, а также среднюю кинетическую энергию $<\varepsilon>$ молекулы этого газа при температуре T=300 K, если количество вещества v этого газа равно 0,5 моль.
- 142. Определить суммарную кинетическую энергию E_{κ} поступательного движения всех молекул газа, находящегося в сосуде вместимостью V=3 л под давлением p=540 кПа.
- 143. Количество вещества гелия v=1,5 моль, температура T=120 К. Определить суммарную кинетическую энергию E_{κ} поступательного движения всех молекул этого газа.
- 144. Молярная внутренняя энергия $U_{\rm m}$ некоторого двухатомного газа равна 6,02 кДж/моль. Определить среднюю кинетическую энергию $<\varepsilon_{\rm вр}>$ вращательного движения одной молекулы этого газа. Газ считать идеальным.
- 145. Определить среднюю кинетическую энергию $< \varepsilon >$ одной молекулы водяного пара при температуре T = 500 K.
- 146.Определить среднюю квадратичную скорость $\langle v_{\text{кв}} \rangle$ молекулы газа, заключенного в сосуд вместимостью V=2 л под давлением p=200 кПа. Масса газа m=0,3 г.

- 147. Водород находится при температуре T=300 К. Найти среднюю кинетическую энергию $\langle \varepsilon_{\rm Bp} \rangle$ вращательного движения одной молекулы, а также суммарную кинетическую энергию $E_{\rm K}$ всех молекул этого газа; количество водорода $\nu=0,5$ моль.
- 148. При какой температуре средняя кинетическая энергия $<\varepsilon_{\rm n}>$ поступательного движения молекулы газа равна $4,14\cdot10^{-21}$ Дж?
- 149.В азоте взвешены мельчайшие пылинки, которые движутся так, как если бы они были очень крупными молекулами. Масса каждой пылинки равна $6 \cdot 10^{-10} \, \text{г}$. Газ находится при температуре $T = 400 \, \text{K}$. Определить средние квадратичные скорости $\langle v_{\text{кв}} \rangle$, а также средние кинетические энергии $\langle \varepsilon_{\text{п}} \rangle$ поступательного движения молекулы азота и пылинки.
- 150.Определить среднюю кинетическую энергию $\langle \varepsilon_n \rangle$ поступательного движения и $\langle \varepsilon_{вp} \rangle$ вращательного движения молекулы азота при температуре T = 1 кВ. Определить также полную кинетическую энергию E_{κ} молекулы при тех же условиях.
- 151.Определить молярную массу M двухатомного газа и его удельные теплоемкости, если известно, что разность c_P c_V удельных теплоемкостей этого газа равна 260 Дж/(кг·К).
- 152. Найти удельные c_P и c_V , а также молярные C_P и C_V теплоемкости углекислого газа.
- 153.Определить показатель адиабаты γ идеального газа, который при температуре $T=350\mathrm{K}$ и давлении p=0,4 МПа занимает объем V=300 л и имеет теплоемкость $\mathrm{C_V}=857$ Дж/К.
- 154.В сосуде вместимостью V = 6 л находится при нормальных условиях двухатомный газ. Определить теплоемкость C_V этого газа при постоянном объеме.
- 155.Определить относительную молекулярную массу $M_{\rm r}$ и молярную массу M газа, если разность его удельных теплоемкостей $c_{\rm p}$ $c_{\rm V} = 2{,}08~{\rm к}$ Дж/(кг· K).
- 156.Определить молярные теплоемкости газа, если его удельные теплоемкости $c_V = 10.4$ кДж/(кг·К) и $c_P = 14.6$ кДж/(кг·К).
- 157. Найти удельные $c_{\rm v}$ и $c_{\rm p}$ и молярные $C_{\rm V}$ и $C_{\rm P}$ теплоемкости азота и гелия.
- 158. Вычислить удельные теплоемкости газа, зная, что его молярная масса $M = 4 \cdot 10^{-3}$ кг/моль и отношение теплоемкостей $C_{\rm p}/C_{\rm V} = 1,67$.
- 159. Трехатомный газ под давлением p = 240 кПа и температуре t = 20°C занимает объем V = 10 л. Определить теплоемкость $C_{\rm P}$ этого газа при постоянном давлении.
- 160.Одноатомный газ при нормальных условиях занимает объем V = 5л. Вычислить теплоемкость C_V этого газа при постоянном объеме.
- 161. Найти среднее число $\langle z \rangle$ столкновений за время t=1 c и длину свободного пробега $\langle t \rangle$ молекулы гелия, если газ находится под давлением p=2 кПа при температуре T=200 К.
- 162. Определить среднюю длину свободного пробега < l> молекулы азота в сосуде вместимостью V=5 л. Масса газа m=0.5 г.
- 163.Водород находится под давлением p = 20 мкПа и имеет температуру T = 300 К. Определить среднюю длину свободного пробега < l> молекулы такого газа.
- 164.При нормальных условиях длина свободного пробега <*l>* молекулы водорода равна 0,160 мкм. Определить диаметр *d* молекулы водорода.
- 165. Какова средняя арифметическая скорость <*v*> молекул кислорода при нормальных условиях, если известно, что средняя длина свободного пробега <*l>* молекулы кислорода при этих условиях равна 100 нм?
- 166. Кислород находится под давлением p = 133 нПа при температуре T = 200 К. Вычислить среднее число <z> столкновений молекулы кислорода при этих условиях за время t = 1 c.
- 167. При каком давлении p средняя длина свободного пробега $< \triangleright$ молекул азота равна 1 м, если температура газа t = 10 °C?
- 168.В сосуде вместимостью V = 5 л находится водород массой m = 0.5 г. Определить среднюю длину свободного пробега < l > молекулы водорода в этом сосуде.
- 169.Средняя длина свободного пробега < молекулы водорода при некоторых условиях равна 2 мм. Найти плотность ρ водорода при этих условиях.
- 170.В сферической колбе вместимостью V = 3 л, содержащей азот, создан вакуум с давлением p = 80 мкПа. Температура газа T = 250 К. Можно ли считать вакуум в колбе высоким?
- 171. Определить количество теплоты Q, которое надо сообщить кислороду объемом V = 50 л при его изохорном нагревании, чтобы давление газа повысилось на $\Delta p = 0.5$ МПа.
- 172. При изотермическом расширении азота при температуре T = 280 К объем его увеличился в два раза. Определить: 1) совершенную при расширении газа работу A; 2) изменение внутренней энергии; 3) количество теплоты Q, полученное газом. Масса азота m = 0.2 кг.
- 173. При адиабатном сжатии давление воздуха было увеличено от $p_1 = 50$ кПа до $p_2 = 0,5$ МПа. Затем при неизменном объеме температура воздуха была понижена до первоначальной. Определить давление p_3 газа в конце процесса.
- 174. Кислород массой m=200 г занимает объем $V_1=100$ л и находится под давлением $p_1=200$ кПа. При нагревании газ расширился при постоянном давлении до объема $V_2=300$ л, а затем его давление возросло до $p_3=500$ кПа при неизменном объеме. Найти изменение внутренней энергии ΔU газа, совершенную газом работу A и теплоту Q, переданную газу. Построить график процесса.
- 175. Объем водорода при изотермическом расширении при температуре T = 300 K увеличился в n = 3 раза. Определить работу A, совершенную газом, и теплоту Q, полученную при этом. Масса m водорода равна 200 г.
- 176. Азот массой m = 0,1 кг был изобарно нагрет от температуры $T_1 = 200$ К до температуры $T_2 = 400$ К. Определить работу A, совершенную газом, полученную им теплоту Q и изменение ΔU внутренней энергии азота.
- 177. Во сколько раз увеличится объем водорода, содержащий количество вещества v=0.4 моль при изотермическом расширении, если при этом газ получит количество теплоты $Q=800~\mathrm{Дж}$? Температура водорода $T=300~\mathrm{K}$.
- 178. Какая работа A совершается при изотермическом расширении водорода массой m = 5 г, взятого при температуре T = 290 K, если объем газа увеличивается в три раза?
- 179. Какая доля ω_1 количества теплоты Q, подводимого к идеальному двухатомному газу при изобарном процессе, расходуется на увеличение внутренней энергии газа и какая доля ω_2 на работу A расширения? Рассмотреть три случая, если газ: 1) одноатомный; 2) двухатомный; 3) трехатомный.

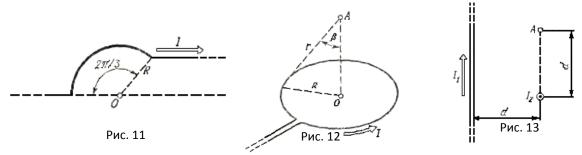
- 180. Определить работу A, которую совершит азот, если ему при постоянном давлении сообщить количество теплоты Q = 21 кДж. Найти также изменение ΔU внутренней энергии газа.
- 181. Идеальный газ совершает цикл Карно при температурах теплоприемника T_2 = 290 К и теплоотдатчика T_1 = 400 К. Во сколько раз увеличится коэффициент полезного действия цикла, если температура теплоотдатчика возрастет до T_1 = 600 К?
- 182. Идеальный газ совершает цикл Карно. Температура T_1 теплоотдатчика в четыре раза (n=4) больше температуры теплоприемника. Какую долю ω количества теплоты, полученного за один цикл от теплоотдатчика, газ отдаст теплоприемнику?
- 183. Определить работу A_2 изотермического сжатия газа, совершающего цикл Карно, КПД которого $\eta = 0,4$, если работа изотермического расширения равна $A_1 = 8$ Дж.
- 184. Газ, совершающий цикл Карно, отдал теплоприемнику теплоту Q_2 = 14 кДж. Определить температуру T_1 теплоотдатчика, если при температуре теплоприемника T_2 = 280 К работа цикла A = 6кДж.
- 185. Газ, являясь рабочим веществом в цикле Карно, получил от теплоотдатчика теплоту $Q_1 = 4{,}38$ кДж и совершил работу $A = 2{,}4$ кДж. Определить температуру теплоотдатчика, если температура теплоприемника $T_2 = 273$ К.
- 186. Газ, совершающий цикл Карно, отдал теплоприемнику 67% теплоты, полученной от теплоотдатчика. Определить температуру T_2 теплоприемника, если температура теплоотдатчика T_1 = 430 К.
- 187. Во сколько раз увеличится коэффициент полезного действия η цикла Карно при повышении температуры теплоотдатчика от $T_1 = 380$ К до $T_1 = 560$ К? Температура теплоприемника $T_2 = 280$ К.
- 188. Идеальная тепловая машина работает по циклу Карно. Температура теплоотдатчика $T_1 = 500$ K, температура теплоприемника $T_2 = 250$ K. Определить термический КПД η цикла, а также работу A_1 рабочего вещества при изотермическом расширении, если при изотермическом сжатии совершена работа $A_2 = 70$ Дж.
- 189. Газ, совершающий цикл Карно, получает теплоту $Q_1 = 84$ кДж. Определить работу A газа, если температура T_1 теплоотдатчика в три раза выше температуры T_2 теплоприемника.
 - В цикле Карно газ получил от теплоотдатчика теплоту $Q_1 = 500 \, \text{Дж}$ и совершил работу $A = 100 \, \text{Дж}$. Температура теплоотдатчика $T_1 = 400 \, \text{K}$. Определить температуру T_2 теплоприемника.
- 190. Найти массу m воды, вошедшей в стеклянную трубку с диаметром канала d = 0.8 мм, опущенную в воду на малую глубину. Считать смачивание полным.
- 191. Какую работу A надо совершить при выдувании мыльного пузыря, чтобы увеличить его объем от $V_1 = 8$ см 3 до $V_2 = 16$ см 3 ? Считать процесс изотермическим.
- 192. Какая энергия E выделится при слиянии двух капель ртути диаметром $d_1 = 0.8$ мм и $d_2 = 1.2$ мм в одну каплю?
- 193. Определить давление p внутри воздушного пузырька диаметром d=4 мм, находящегося в воде у самой ее поверхности. Считать атмосферное давление нормальным.
- 194.Пространство между двумя стеклянными параллельными пластинками с площадью поверхности $S=100~{\rm cm}^2$ каждая, расположенными на расстоянии $l=20~{\rm mkm}$ друг от друга, заполнено водой. Определить силу F, прижимающую пластинки друг к другу. Считать мениск вогнутым с диаметром d, равным расстоянию между пластинками.
- 195. Глицерин поднялся в капиллярной трубке диаметром канала d=1 мм на высоту h=20 мм. Определить поверхностное натяжение α глицерина. Считать смачивание полным.
- 196.В воду опущена на очень малую глубину стеклянная трубка с диаметром канала d=1 мм. Определить массу m воды, вошедшей в трубку.
- 197. На сколько давление p воздуха внутри мыльного пузыря больше нормального атмосферного давления p_0 , если диаметр пузыря d = 5 мм?
- 198. Воздушный пузырек диаметром d = 2,2 мкм находится в воде у самой ее поверхности. Определить плотность p воздуха в пузырьке, если воздух над поверхностью воды находится при нормальных условиях.
- 199. Две капли ртути радиусом r = 1,2 мм каждая слились в одну большую каплю. Определить энергию E, которая выделится при этом слиянии. Считать процесс изотермическим.
- 200. Электростатика. Постоянный электрический ток.
- 201.С какой силой, приходящейся на единицу площади, отталкиваются две одноименно заряженные бесконечно протяженные плоскости с одинаковой поверхностной плотностью заряда $\sigma = 2 \text{ мкКл/м}^2$? [0,23 H/м²]
- 202. Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы получить скорость v = 8 Mm/c? [182 В]
- 203. Заряд равномерно распределен по бесконечной плоскости с поверхностной плотностью $\sigma = 10$ нКл/м². Определить разность потенциалов двух точек поля, одна из которых находится на плоскости, а другая удалена от нее на расстояние a = 10 см. [56,6 B]
- 204. Электрон с начальной скоростью $v=3\,\mathrm{Mm/c}$ влетел в однородное электрическое поле напряженностью $E=150\,\mathrm{B/m}$. Вектор начальной скорости перпендикулярен линиям напряженности электрического поля. Определить: 1) силу, действующую на электрон; 2) ускорение, приобретаемое электроном; 3) скорость электрона через $t=0,1\,\mathrm{mkc}$. [24 аH; 26,4 $\mathrm{Tm/c^2}$; 4 $\mathrm{Mm/c}$]
- 205.К батарее с ЭДС ε = 300 В включены два плоских конденсатора емкостями C_1 = 2пФ и C_2 = 3пФ. Определить заряд Q и напряжение U на пластинках конденсаторов при последовательном и параллельном соединениях. [1) 0,36 нКл; 180 В; 120 В; 2) 0,6 нКл; 0,9 кКл; 300 В]
- 206. Конденсатор емкостью $C_1 = 600$ пФ зарядили до разности потенциалов $U_1 = 1,5$ кВ и отключили от источника напряжения. Затем к нему параллельно присоединили незаряженный конденсатор емкостью $C_2 = 400$ пФ. Определить энергию, израсходованную на образование искры, проскочившей при соединении конденсаторов. [0,27 мДж]
- 207. На концах медного провода длиной l = 5 м поддерживается напряжение U = 1 В. Определить плотность тока j в проводе. $[1,18\cdot10^7 \text{ A/m}^2]$

- 208. Резистор сопротивлением $R_1 = 5$ Ом, вольтметр и источник тока соединены параллельно. Вольтметр показывает напряжение U = 10В. Если заменить резистор другим с сопротивлением, $R_2 = 12$ Ом, то вольтметр покажет напряжение $U_2 = 12$ В. Определить ЭДС и внутреннее сопротивление источника тока. Током через вольтметр пренебречь. [14 В; 2 Ом]
- 209. Определить электрический заряд, прошедший через поперечное сечение провода сопротивлением R=3 Ом при равномерном нарастании напряжения на концах провода от $U_1=2$ В до $U_2=4$ В в течение t=20 c. [20 Кл]
- 210. Определить силу тока в цепи, состоящей из двух элементов с ЭДС ε_1 = 1,6 В и ε_2 = 1,2 В и внутренними сопротивлениями R_1 = 0,6 Ом и R_2 = 0,4 Ом, соединенных одноименными полюсами. [0,4 A]
- 211. Гальванический элемент дает на внешнее сопротивление $R_1 = 0.5$ Ом силу тока $I_1 = 0.2$ А. Если внешнее сопротивление заменить на $R_2 = 0.8$ Ом, то элемент дает силу тока $I_2 = 0.15$ А. Определить силу тока короткого замыкания. [0.45 A]
- 212.К источнику тока с ЭДС ε = 12 В присоединена нагрузка. Напряжение U на клеммах источника стало при этом равным 8 В. Определить КПД источника тока. [68%]
- 213.Внешняя цепь источника тока потребляет мощность P = 0.75 Вт. Определить силу тока в цепи, если ЭДС источника тока $\varepsilon = 2$ В и внутреннее сопротивление R = 1 Ом. [0.5 и 1.5 А]
- 214. Какая наибольшая полезная мощность P_{max} может быть получена от источника тока с ЭДС $\varepsilon = 12$ В и внутренним сопротивлением R = 1 Ом? [36 Вт]
- 215. При выключении источника тока сила тока в цепи убывает по закону $I = I_0 e^{-\alpha t} (I_0 = 10 \text{A}, \alpha = 5 \cdot 10^2 \text{ c}^{-1})$. Определить количество теплоты, которое выделится в резисторе сопротивлением R = 5 Ом после выключения источника тока. [0,5 Дж]
- 216. Точечные заряды $Q_1 = 20$ мкКл, $Q_2 = -10$ мкКл находятся на расстоянии d = 5 см друг от друга. Определить напряженность поля в точке, удаленной на $r_1 = 3$ см от первого и на $r_2 = 4$ см от второго заряда. Определить также силу F, действующую в этой точке на точечный заряд Q = 1 мкКл.
- 217. Три одинаковых точечных заряда $Q_1 = Q_2 = Q_3 = -2$ нКл находятся в вершинах равностороннего треугольника со сторонами a = 10см. Определить модуль и направление силы F, действующей на один из зарядов со стороны двух других.
- 218.Два положительных точечных заряда Q и 9Q закреплены на расстоянии d=100 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд так, чтобы он находился в равновесии. Указать, какой, знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения зарядов возможны только вдоль прямой, проходящей через закрепленные заряды.
- 219. Два одинаково заряженных шарика подвешены в одной толчке на нитях одинаковой длины. При этом нити разошлись на угол α . Шарики погружают в масло. Какова плотность ρ масла, если угол расхождения нитей при погружении в масло остается неизменным? Плотность материала шариков $\rho_0 = 1.5 \cdot 10^3$ кг/м³, диэлектрическая проницаемость масла $\varepsilon = 2.2$.
- 220. Четыре одинаковых заряда $Q_1 = Q_2 = Q_3 = Q_4 = 40$ кКл закреплены в вершинах квадрата со стороной a = 10 см. Найти силу F, действующую на один из этих зарядов со стороны трех остальных.
- 221. Точечные заряды $Q_1 = 30$ мкКл и $Q_2 = -20$ мкКл находятся на расстоянии d = 20 см друг от друга. Определить напряженность электрического поля E в точке, удаленной от первого заряда на расстояние $r_1 = 30$ см, а от второго на $r_2 = 15$ см.
- 222.В вершинах правильного треугольника со стороной a=10 см находятся заряды $Q_1=10$ мкКл, $Q_2=20$ мк и $Q_3=30$ мкКл. Определить силу F, действующую на заряд Q_1 со стороны двух других зарядов.
- 223.В вершинах квадрата находятся одинаковые заряды $Q_1 = Q_2 = Q_3 = Q_4 = 8 \cdot 10^{-10}$ Кл. Какой отрицательный заряд Q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда?
- 224. На расстоянии d = 20см находятся два точечных заряда: $Q_1 = -50$ кКл и $Q_2 = 100$ нКл. Определить силу F, действующую на заряд $Q_3 = -10$ нКл, удаленный от обоих зарядов на одинаковое расстояние, равное d.
- 225. Расстояние d между двумя точечными зарядами $Q_1 = 2$ нКл и $Q_2 = 4$ нКл равно 60 см. Определить точку, в которую нужно поместить третий заряд Q_3 так, чтобы система зарядов находилась в равновесии. Определить заряд Q_3 и его знак. Устойчивое или неустойчивое будет равновесие?
- 226. Тонкий стержень длиной l=20 см несет равномерно распределенный заряд $\tau=-0,1$ мкКл. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке A, лежащей, на оси стержня на расстоянии a=20 см от его конца.
- 227. По тонкому полукольцу радиуса R=10 см равномерно распределен заряд с линейной плотностью $\tau=1$ мкКл/м. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке O, совпадающей с центром кольца.
- 228. Тонкое кольцо несет распределенный заряд Q = 0.2 мкКл. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке A, равноудаленной от всех точек кольца на расстояние r = 20 см. Радиус кольца R = 10 см.
- 229. Треть тонкого кольца радиуса R = 10 см несет распределенный заряд Q = 50нКл. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке O, совпадающей с центром кольца.
- 230. Бесконечный тонкий стержень, ограниченный с одной стороны, несет равномерно распределенный заряд с линейной плотностью $\tau = 0.5$ мкКл/м. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке A, лежащей на оси стержня на расстоянии a = 20 см от его начала.
- 231.По тонкому кольцу радиусом R=20 см равномерно распределен с линейной плотностью $\tau=0,2$ мкКл/м заряд. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке A, находящейся на оси кольца на расстоянии h=2R от его центра.
- 232.По тонкому полукольцу равномерно распределен заряд Q = 20 мкКл с линейной плотностью $\tau = 0,1$ мкКл/м. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке O, совпадающей с центром кольца.
- 233. Четверть тонкого кольца радиусом R=10 см несет равномерно распределенный заряд Q=0.05 мкКл. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке O, совпадающей с центром коль-

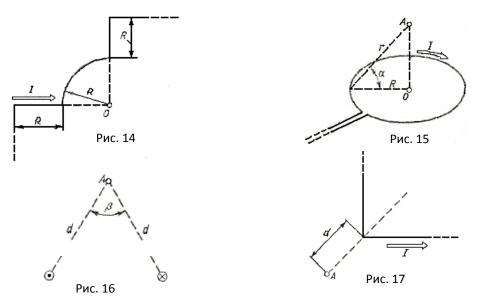
- 234. По тонкому кольцу равномерно распределен заряд Q=10 нКл с линейной плотностью $\tau=0.01$ мкКл/м. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке A, лежащей на оси кольца и удаленной от его центра на расстояние, равное радиусу кольца.
- 235. Две трети тонкого кольца радиусом R=10 см несут равномерно распределенный с линейной плотностью $\tau=0,2$ мкКл/м заряд. Определить напряженность E электрического поля, создаваемого распределенным зарядом в точке O, совпадающей с центром кольца.
- 236. Два точечных заряда $Q_1 = 6$ нКл и $Q_2 = 3$ нКл находятся на расстоянии d = 60 см друг от друга. Какую работу необходимо совершить внешним силам, чтобы уменьшить расстояние между зарядами вдвое?
- 237. Электрическое поле создано заряженным проводящим шаром, потенциал ϕ которого 300 В. Определить работу сил поля по перемещению заряда Q = 0.2 мкКл из точки 1 в точку 2 (рис. 4).
- 238. Электрическое поле создано зарядами $Q_1 = 2$ мкКл и $Q_2 = -2$ мкКл, находящимися на расстоянии a = 10 см друг от друга. Определить работу сил поля, совершаемую при перемещении заряда Q = 0.5 мкКл из точки 1 в точку 2 (рис. 5).
- 239. Две параллельные заряженные плоскости, поверхностные плотности заряда которых $\sigma_1 = 2$ мкКл/м² и $\sigma_2 = -0.8$ мкКл/м², находятся на расстоянии d = 0.6 см друг от друга. Определить разность потенциалов U между плоскостями.
- 240. Диполь с электрическим моментом p=100 пКл·м свободно установился в свободном, электрическом поле напряженностью E=500 кВ/м. Определить работу внешних сил, которую необходимо совершить для поворота диполя на угол $\alpha=180^\circ$.
- 241. Четыре одинаковых капли ртути, заряженных до потенциала $\phi = 10$ В, сливаются в одну. Каков потенциал ϕ_1 образовавшейся капли?
- 242. Тонкий стержень согнут в кольцо радиусом R = 10 см. Он равномерно заряжен с линейной плотностью заряда $\tau = 800$ нКл/м. Определить потенциал ϕ в точке, расположенной на оси кольца на расстоянии h = 10 см от его центра.
- 243.Поле образовано точечным диполем с электрическим моментом $p = 200\,$ пКл· м. Определит в рабность потенциалов U двух точек поля, расположенных симметрично относительно диполя на его оси на расстоянии $r = 40\,$ см от центра диполя.
- 244. Электрическое поле образовано бесконечно длинной заряженной нитью, линейная плотность заряда которой $\tau = 20$ пКл/м. Определить разность потенциалов U двух точек поля, отстоящих от нити на расстоянии $r_1 = 8$ см и $r_2 = 12$ см.
- 245. Тонкая квадратная рамка равномерно заряжена с линейной плотностью заряда $\tau = 200$ пКл/м. Определить потенциал φ поля в точке пересечения диагоналей.
- 246. Пылинка массой m=200 мкг, несущая на себе заряд Q=40 нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U=200 В пылинка имела скорость v=10 м/с. Определить скорость v_0 пылинки до того, как она влетела в поле.
- 247.Электрон, обладавший кинетической энергией T = 10 эВ, влетел в однородное электрическое поле в направлении силовых линий поля. Какой скоростью будет обладать электрон, пройдя в этом поле разность потенциалов U = 8 В?
- 248. Найти отношение скоростей ионов Cu^{++} и K^{+} , прошедших одинаковую разность потенциалов.
- 249. Электрон с энергией T = 400 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R = 10 см. Определить минимальное расстояние a, на которое приблизится электрон к поверхности сферы, если заряд ее Q = -10 нКл.
- 250. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость $v=10^5$ м/с. Расстояние между пластинами d=8 мм. Найти: 1) разность потенциалов U между пластинами; 2) поверхностную плотность заряда σ на пластинах.
- 251. Пылинка массой m=5 кг, несущая на себе N=10 электронов, прошла в вакууме ускоряющую разность потенциалов U=1 MB. Какова кинетическая энергия T пылинки? Какую скорость и приобрела пылинка?
- 252. Какой минимальной скоростью v_{\min} должен обладать протон, чтобы он мог достигнуть поверхности заряженного до потенциала $\varphi = 400$ В металлического шара (рис.6)?

- 253.В однородное электрическое поле напряженностью E = 200 В/м влетает (вдоль силовой линии) электрон со скоростью $v_0 = 2$ Мм/с. Определить расстояние l, которое пройдет электрон до точки, в которой его скорость будет равна половине начальной.
- 254. Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределенным зарядом ($\tau = 10$ нКл/м). Определить кинетическую энергию T_2 электрона в точке 2, если в точке 1 его кинетическая энергия $T_1 = 200$ эВ (рис. 7).
- 255.Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потен-

циалом $\varphi_1 = 100 \text{ B}$ электрон имел скорость $V_1 = 6 \text{ Mm/c}$. Определить потенциал φ_2 точки поля, дойдя до которой электрон потеряет половину своей скорости.


- 256. Конденсаторы емкостью $C_1 = 5$ мкФ и $C_2 = 10$ мкФ заряжены до напряжений $U_1 = 60$ В и $U_2 = 100$ В соответственно. Определить напряжение на обкладках конденсаторов после их соединения обкладками, имеющими одноименные заряды.
- 257. Конденсатор емкостью $C_1 = 10$ мкФ заряжен до напряжения U = 10 В. Определить заряд на обкладках этого конденсатора после того, как параллельно ему был подключен другой, незаряженный, конденсатор емкостью $C_2 = 20$ мкФ.
- 258.последовательно и находятся под напряжением U = 850 В. Определить напряжение и заряд на каждом из конденсаторов.
- 259. Два конденсатора емкостями $C_1 = 2$ мк Φ и $C_2 = 5$ мк Φ заряжены до напряжений $U_1 = 100$ В и $U_2 = 150$ В соответственно. Определить напряжение на обкладках конденсаторов поело их соединения обкладками, имеющими разноименные заряды.
- 260.Два одинаковых плоских воздушных конденсатора емкостью $C_1 = 100$ пФ каждый соединены в батарею последовательно. Определить, на сколько изменится емкость C батареи, если пространство между пластинами одного из конденсаторов заполнить парафином.

- 261. Два конденсатора емкостями C_1 = 5 мкФ и C_2 = 8 мкФ соединены последовательно и присоединены к батарее с ЭДС ε = 80 В. Определить заряды Q_1 и Q_2 конденсаторов и разности потенциалов U_1 и U_2 между их обкладками.
- 262.. Плоский конденсатор состоит из двух круглых пластин радиусом R = 10 см каждая. Расстояние между пластинами d = 2 мм. Конденсатор присоединен к источнику напряжения U = 80 В. Определить заряд Q и напряженность E поля конденсатора в двух случаях: а) диэлектрик воздух; б) диэлектрик стекло.
- 263. Два металлических шарика радиусами $R_1 = 5$ см и $R_2 = 10$ см имеют заряды $Q_1 = 40$ нКл и $Q_2 = -20$ нКл соответственно. Найти энергию W, которая выделится при разряде, если шары соединить проводником.
- 264. Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектрика: стекла толщиной $d_1 = 0.2$ см и слоем парафина толщиной $d_2 = 0.3$ см. Разность потенциалов между обкладками U = 300 В. Определить напряженность E поля и падение потенциала в каждом из слоев.
- 265. Плоский конденсатор с площадью пластин $S=200~{\rm cm}^2$ каждая заряжен до-разности потенциалов $U=2~{\rm kB}$. Расстояние между пластинами $d=2~{\rm cm}$. Диэлектрик стекло, Определить энергию W поля конденсатора и плотность энергии ω поля.
- 266. Катушка и амперметр соединены последовательно и подключены к источнику тока. К клеммам катушки присоединен вольтметр с. сопротивлением r=4 кОм. Амперметр показывает силу тока I=0,3 А, вольтметр напряжение U=120 В. Определить сопротивление R катушки. Определить относительную погрешность ε , которая будет допущена при измерении сопротивления, если пренебречь силой тока, текущего через вольтметр.
- 267.ЭДС батареи $\varepsilon = 80$ В, внутреннее сопротивление Ri = 5 Ом. Внешняя цепь потребляет мощность P = 100 Вт. Определить силу тока I в цепи, напряжение U, под которым находится внешняя цепь, и ее сопротивление R.
- 268.От батареи, ЭДС которой $\varepsilon = 600$ В. требуется передать энергию на расстояние l = 1 км. Потребляемая мощность P = 5 кВт. Найти минимальные потери мощности в сети, если диаметр медных подводящих проводов d = 0.5 см. .
- 269. При внешнем сопротивлении $R_1 = 8$ Ом сила тока в цепи I = 0,8 А, при сопротивлении $R_2 = 15$ Ом сила тока $I_2 = 0,5$ А, Определить силу тока $I_{\kappa,3}$, короткого замыкания источника ЭДС.
- 270.ЭДС батареи $\varepsilon=24$ В. Наибольшая сила тока, которую может дать батарея, $I_{\rm max}=10$ А. Определить максимальную мощность $P_{\rm max}$, которая может выделяться во внешней цепи.
- 271. Аккумулятор с ЭДС ε = 12 В заряжается от сети постоянного тока с напряжением U = 15 В. Определить напряжение на клеммах аккумулятора, если его внутреннее сопротивление Ri = 10 Ом.
- 272.От источника с напряжением U = 800 В необходимо передать потребителю мощность P = 10 кВт на некоторое расстояние. Какое наибольшее сопротивление может иметь линия передачи, чтобы потери энергии в ней не превышали 10% от передаваемой мощности?
- 273. При включении электромотора в сеть с напряжением U = 220 В он потребляет ток I = 5 А. Определить мощность, потребляемую мотором, и его КПД, если сопротивление R обмотки мотора равно 6 Ом.
- 274.В сеть с напряжением U = 100 В подключили катушку с сопротивлением $R_1 = 2$ кОм и вольтметр, соединенные последовательно. Показание вольтметра $U_1 = 80$ В. Когда катушку заменили другой, вольтметр показал $U_2 = 60$ В. Определить сопротивление R_2 другой катушки.
- 275. ЭДС батареи $\varepsilon = 12$ В. При силе тока I = 4 А КПД батареи $\eta = 0.6$. Определить внутреннее сопротивление R_i батареи.
- 276. За время t = 20 c при равномерно возраставшей силе тока от нуля до некоторого максимума в проводнике сопротивлением R = 5 Ом выделилось количество теплоты Q = 4 кДж. Определить скорость нарастания силы тока.
- 277. Сила тока в проводнике изменяется со временем по закону $I = I_0 e^{-\alpha t}$, где $I_0 = 20$ A, $\alpha = 10^2 c^{-1}$. Определить количество теплоты, выделившееся в проводнике за время $t = 10^{-2} c$.
- 278. Сила тока в проводнике сопротивлением R = 10 Ом за время t = 50 c равномерно нарастает от $I_1 = 5$ A до $I_2 = 10$ А. Определить количество теплоты Q, выделившееся за это время в проводнике.
- 279.В проводнике за время t = 10 с при равномерном возрастании силы тока от = 1 А до $I_2 = 2$ А выделилось количество теплоты Q = 5 кДж. Найти сопротивление R проводника.
- 280.Сила тока в проводнике изменяется со временем по закону $I = I_0 \sin \omega t$. Найти заряд Q, проходящий через поперечное сечение проводника за время t, равное половине периода T, если начальная сила тока $I_0 = 10$ A, циклическая частота $\omega = 50\pi c^{-1}$.
- 281.За время t = 10 c при равномерно возрастающей силе тока от нуля до некоторого максимума в проводнике выделилось количество теплоты Q = 40 кДж Определить среднюю силу тока $\langle I \rangle$ в проводнике, если его сопротивление R = 25 Om.
- 282.За время t = 8 c при равномерно возраставшей силе тока в проводнике сопротивлением R = 8 Ом выделилось количество теплоты Q = 500 Дж. Определить заряд q, проходящий в проводнике, если сила тока в начальный момент времени равна нулю.
- 283. Определить количество теплоты Q, выделившееся за время $t = 10 \ c$ в проводнике сопротивлением $R = 10 \ O$ м, если сила тока в нем, равномерно уменьшаясь, изменилась от $I_1 = 10 \ A$ до $I_2 = 0$.
- 284. Сила тока в цепи изменяется по закону $I = I_0 \sin \omega t$. Определить количество теплоты, которое выделится в проводнике сопротивлением R = 10 Ом за время, равное четверти периода (от $t_1 = 0$ до $t_2 = {}^T/_4$, где T = 10 c).
- 285. Сила тока в цепи изменяется со временем по закону $I = I_0 e^{-\alpha t}$. Определить количество теплоты, которое выделится в проводнике сопротивлением R = 20 Ом за время, в течение которого ток уменьшится в e раз. Коэффициент α принять равным $2 \cdot 10^{-2} c^{-1}$.


Электромагнетизм.

- 1. Напряженность магнитного поля H = 100 A/m. Вычислить магнитную индукцию B этого поля в вакууме. [126мкТл]
- 286.По двум длинным параллельным проводам текут в одинаковом направлении токи $I_1 = 10$ A и $I_2 = 15$ A. Расстояние между проводами A = 10 см. Определить напряженность H магнитного поля в точке, удаленной от первого провода на $r_1 = 8$ см и от второго на $r_2 = 6$ см. [44,5] А/м]
- 2. Решить задачу 2 при условии, что токи текут в противоположных направлениях, точка удалена от первого провода на r_1 = 15 см и от второго на r_2 = 10 см. [17,4 A/м]
- 3. По тонкому проводнику, изогнутому в виде правильного шестиугольника со стороной a = 10 см, идет ток I = 20 А. Определить магнитную индукцию B в центре шестиугольника. [138мкТл]

- 287. диаметром d = 0,2 мм. Определить магнитную индукцию B на оси соленоида, если по проводу идет ток I = 0,5 А. [6,28 мТл]
- 288.В однородном магнитном поле с индукцией B = 0.01 Тл помещен прямой проводник длиной l = 20 см (подводящие провода находятся вне поля). Определить силу F, действующую на проводник, если по нему течет ток I = 50 А, а угол ϕ между направлением тока и вектором магнитной индукции равен 30°. [50 мН]
- 1. Рамка с током I = 5 А содержит N = 20 витков тонкого провода. Определить магнитный момент $p_{\rm m}$ рамки с током, если ее площадь $S = 10 {\rm cm}^2$. $[0,1 \ {\rm A} \cdot {\rm m}^2]$
- 289.По витку радиусом R = 10 см течет ток I = 50 А. Виток помещен в однородное магнитное поле (B = 0,2 Тл). Определить момент силы M, действующей на виток, если плоскость витка составляет угол $\phi = 60^{\circ}$ с линиями индукции. [0,157 Н·м]
- 290. Протон влетел в магнитное поле перпендикулярно линиям индукции и описал дугу радиусом R = 10 см. Определить скорость v протона, если магнитная индукция B = 1 Тл. [9,57 Мм/с]
- 291.. Определить частоту n обращения электрона по круговой орбите в магнитном поле (B = 1Tл). [2,8·10¹⁰]
- 292. Электрон в однородном магнитном поле движется по винтовой линии радиусом R=5 см и шагом h=20 см. Определить скорость v электрона, если магнитная индукция B=0,1 мТл. $[1,04\cdot10^6$ м/с]
- 293. Кольцо радиусом R=10 см находится в однородном магнитном поле (B=0,318 Тл). Плоскость кольца составляет с линиями индукции угол $\phi=30^\circ$. Вычислить магнитный поток Φ , пронизывающий кольцо. [5 мВб]
- 294. По проводнику, согнутому в виде квадрата со стороной a = 10 см, течет ток I = 20 А. Плоскость квадрата перпендикулярна магнитным силовым линиям поля. Определить работу A, которую необходимо совершить для того, чтобы удалить проводник за пределы поля. Магнитная индукция B = 0.1 Тл. Поле считать однородным. [0.02 Дж]
- 295. По тонкому кольцу радиусом R = 20 см течет ток I = 100 А. Определить магнитную индукцию B на оси кольца в точке A (рис. 12). Угол $\beta = \pi/3$.
- 296. По двум бесконечно длинным проводам, скрещенным под прямым углом, текут токи I_1 и $I_2 = 2I_1$ ($I_1 = 100$ A). Определить магнитную индукцию S в точке A, равноудаленной от проводов на расстояние d = 10 см (рис. 13).

- 297. По бесконечно длинному проводу, изогнутому так, как это показано на рис. 14, течет ток I = 200 А. Определить магнитную индукцию B в точке O. Радиус дуги R = 10 см.
- 298.По тонкому кольцу течет ток I=80 А. Определить магнитную индукцию B в точке A, равноудаленной от точек кольца на расстояние r=10 см (рис. 15). Угол $\alpha=\pi/6$.
- 299. По двум бесконечно длинным, прямым параллельным проводам текут одинаковые токи I = 60 А. Определить магнитную индукцию B в точке A (рис. 16), равноудаленной от проводов на расстояние d = 10см. Угол $\beta = \pi/3$.
- 300. Бесконечно длинный провод с током I = 50 А изогнут так, как это показано на рис. 17. Определить магнитную индукцию B в точке A, лежащей на биссектрисе прямого угла на расстоянии d = 10 см от его вершины.

- 301.По двум параллельным проводам длиной l=3 м каждый текут одинаковые токи I=500 А. Расстояние d между проводами равно 10 см. Определить силу F взаимодействия проводов.
- 302.друг от друга, текут одинаковые токи I = 400 А. В двух проводах направления токов совпадают. Вычислить для каждого из проводов отношение силы, действующей на него, к его длине.

- 303.Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I = 200 А. Определись силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится от него па расстоянии, равном ее длине.
- 304. Короткая катушка площадью поперечного сечения $S=250~{\rm cm}^2$, содержащая $N=500~{\rm витков}$ провода, по которому течет ток $I=5~{\rm A}$, помещена в однородное магнитное поле напряженностью $H=1000~{\rm A/m}$. Найти: 1) магнитный момент $p_{\rm m}$ катушки; 2) вращающий момент M, действующий на катушку, если ось катушки составляет угол $\phi=30^\circ$ с линиями поля
- 305. Тонкий провод длиной l=20 см изогнут в виде полукольца и помещен в магнитное поле (B=10мТл) так, что площадь полукольца перпендикулярна линиям магнитной индукции. По проводу пропустили ток I=50 А. Определить силу F, действующую на провод. Подводящие провода направлены вдоль линий магнитной индукции.
- 306. Шины генератора длиной l=4 м находятся на расстоянии a=10 см друг от друга. Найти силу взаимного отталкивания шин при коротком замыкании, если ток $I_{\kappa,3}$ короткого замыкания равен 5 кА.
- 307. Квадратный контур со стороной a=10 см, по которому течет ток I=50 А, свободно установился в однородном магнитном поле (B=10мТл). Определить изменение $\Delta\Pi$ потенциальной энергии контура при повороте вокруг оси, лежащей в плоскости контура, на угол $\beta=180^\circ$.
- 308. Тонкое проводящее кольцо с током I = 40 А помещено в однородное магнитное поле (B = 80мТл). Плоскость кольца перпендикулярна линиям магнитной индукции. Радиус R кольца равен 20 см. Найти силу F, растягивающую кольцо.
- 309. Квадратная рамка из тонкого провода может свободно вращаться вокруг горизонтальной оси, совпадающей с одной из сторон. Масса m рамки раина 20 г. Рамку поместили в однородное магнитное поле (B=0,1 Тл), направленное вертикально вверх. Определить угол α , на который отклонилась рамка от вертикали, когда по ней пропустили ток I=10 А.
- 310.Заряд Q=0,1 мкКл равномерно распределен по стержню длиной l=50 см. Стержень вращается с угловой скоростью $\omega=20$ рад/с относительно оси, перпендикулярной стержню и проходящей через его середину. Найти магнитный момент $p_{\rm m}$, обусловленный вращением стержня.
- 311. Электрон в атоме водорода движется вокруг ядра (протона) по окружности радиусом R=53 пм. Определить магнитный момент $p_{\rm m}$ эквивалентного кругового тока.
- 312.Сплошной цилиндр радиусом R=4 см и высотой h=15 см несет равномерно распределенный по объему заряд ($\rho=0,1$ мкКл/м³). Цилиндр вращается с частотой n=10 с¹ относительно оси, совпадающей с его геометрической осью. Найти магнитный момент $p_{\rm m}$ цилиндра, обусловленный его вращением.
- 313.По поверхности диска радиусом R=15 см равномерно распределен заряд Q=0,2 мкКл. Диск вращается с угловой скоростью $\omega=30$ рад/с относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить магнитный момент $p_{\rm n}$, обусловленный вращением диска.
- 314.По тонкому стержню длиной l=40 см равномерно распределен заряд Q=60 нКл. Стержень вращается с частотой n=12 с относительно оси, перпендикулярной стержню и проходящей через стержень на расстоянии a=l/3 от одного из его концов. Определить магнитный момент p_{m} обусловленный вращением стержня.
- 315. Два иона разных масс с одинаковыми зарядами влетели в однородное магнитное поле, стали двигаться по окружностям радиусами $R_1 = 3$ см и $R_2 = 1,73$ см. Определить отношение масс ионов, если они прошли одинаковую ускоряющую разность потенциалов.
- 316.Электрон влетел в однородное магнитное поле (B = 200 мТл) перпендикулярно линиям магнитном индукции. Определить силу эквивалентного кругового тока $I_{3 \text{кв}}$, создаваемого движением электрона в магнитном поле.
- 317. Протон прошел ускоряющую разность потенциалов U = 300В и влетел в однородное магнитное поле (B = 20 Тл) под углом $\alpha = 30^{\circ}$ к линиям магнитной индукции. Определить шаг h и радиус R винтовом линии, по которой будет двигаться протон в магнитном поле.
- 318. Альфа-частица, пройдя ускоряющую разность потенциалов, стала двигаться в однородном магнитном поле (= 50 мТл) по винтовой линии с шагом h = 5 см и радиусом R = 1 см. Определить ускоряющую разность потенциалов, которую прошла альфа-частица.
- 319. Ион с кинетической энергией T=1 кэВ попал в однородное магнитное поле (B=21 мТл) и стал двигаться по окружности. Определить магнитный момент $p_{\rm m}$ эквивалентного кругового тока.
- 320.Ион, попав в магнитное поле ($B=0.01~{\rm Tr}$), стал двигаться по окружности. Определить кинетическую энергию T (в эВ) нона, если магнитный момент $p_{\rm m}$ эквивалентного кругового тока равен $1.6\cdot 10^{-14}~{\rm A\cdot m}^2$.
- 321.Протон влетел в скрещенные под углом $\alpha = 120^{\circ}$ магнитное (B = 50 мТл) и электрическое (E = 20 кВ/м) поля. Определить ускорение a протона, если его скорость v $(|v| = 4 \cdot 10^5 \text{ м/c})$ перпендикулярна векторам E и B. Ускорение a определяется в момент вхождения заряженной частицы в область пространства, где локализованы однородные магнитное и электрическое поля.
- 322. Альфа-частица, имеющая скорость v = 2 Мм/с, влетает под углом $\alpha = 30^{\circ}$ к сонаправленному магнитному (B = 1 мТл) и электрическому (E = 1 кВ/м) полям. Определить ускорение a альфа-частицы. Ускорение a определяется в момент вхождения заряженной частицы в область пространства, где локализованы однородные магнитное и электрическое поля.
- 323. Протон прошел некоторую ускоряющую разность потенциалов U и влетел в скрещенные под прямым углом однородные поля: магнитное (B = 5 мTл) и электрическое (E = 20 кB/м). Определить разность потенциалов U, если протон в скрещенных полях движется прямолинейно.
- 324. Магнитное (B = 2 мТл) и электрическое (E = 1,б кВ/м) поля сонаправлены. Перпендикулярно векторам B и E влетает электрон со скоростью v = 0,8 Мм/с. Определить ускорение a электрона. Ускорение a определяется в момент вхождения заряженной частицы в область пространства, где локализованы однородные магнитное и электрическое поля.
- 325.В скрещенные под прямым углом однородные магнитное (H = 1MA/м) и электрическое (E = 50кВ/м) поля влетел ион. При какой скорости v иона (по модулю и направлению) он будет двигаться в скрещенных полях прямолинейно?
- 326.Плоский контур площадью $S = 20 \text{ см}^2$ находится в однородном магнитном поле (B = 0.03 Тл). Определить магнитный поток Φ , пронизывающий контур, если плоскость его составляет угол $\Phi = 60^{\circ}$ с направлением линий индукций.
- 327. Магнитный поток Φ сквозь сечение соленоида равен 50 мкВб. Длина соленоида l=50 см. Найти магнитный момент $p_{\rm m}$ соленоида, если его витки плотно прилегают друг к другу.

- 328.В средней части соленоида, содержащего n=8 витков/см, помещен круговой виток диаметром d=4 см. Плоскость витка расположена под углом $\phi=60^\circ$ к оси соленоида. Определить магнитный поток Φ , пронизывающий виток, если по обмотке соленоида течет ток I=1 A.
- 329. На длинный картонный каркас диаметром d = 5 см уложена однослойная обмотка (виток к витку) из проволоки диаметром d = 0.2 мм. Определить магнитный поток Φ , создаваемый таким соленоидом при силе тока I = 0.5 А.
- 330. Квадратный контур со стороной a = 10 см, в котором течет ток I = 6А, находится в магнитном поле (B = 0.8 Тл) под углом $= 50^{\circ}$ к линиям индукции. Какую работу A нужно совершить, чтобы при неизменной силе тока в контуре изменить его форму на окружность?
- 331. Плоский контур с током I=5 А свободно установился в однородном магнитном поле (B=0,4 Тл). Площадь контура S=200 см². Поддерживая ток в контуре неизменным, его повернули относительно оси, лежащей в плоскости контура, на угол $\alpha=40^\circ$. Определить совершенную при этом работу A.
 - Виток, в котором поддерживается постоянная сила тока I=60 A, свободно установился в однородном магнитном поле (B=20 мТл). Диаметр витка d=10 см. Какую работу A нужно совершить для того, чтобы, повернуть виток относительно оси, совпадающей с диаметром, на угол $\alpha=\pi/3$?
- 332.В однородном магнитном поле перпендикулярно линиям индукции расположен плоский контур площадью $S = 100 \text{ см}^2$. Поддерживая в контуре постоянную силу тока I = 50 A, его переместили из поля в область пространства, где поле отсутствует. Определить магнитную индукцию B поля, если при перемещении контура была совершена работа A = 0.4Дж.
- 333.Плоский контур с током I = 50 А расположен в однородном магнитном поле (B = 0.6 Тл) так, что нормаль к контуру перпендикулярна линиям магнитной, индукции. Определить работу, совершаемую силами поля при медленном повороте контура около оси, лежащей в плоскости контура, на угол $\alpha = 30^{\circ}$.
- 334. Определить магнитный поток Φ , пронизывающий соленоид, если его длина l = 50 см и магнитный момент $p_{\rm m} = 0.4$ Вб.
- 335.В однородном магнитном поле (B = 0,1 Тл) равномерно с частотой n = 5 с⁻¹ вращается стержень длиной l = 50 см так, что плоскость его вращения перпендикулярна линиям напряженности, а ось вращения проходит через один из его концов. Определить индуцируемую на концах стержня разность потенциалов U.
- 336.В однородном магнитном поле с индукцией B = 0.5 Тл вращается с частотой n = 10 с⁻¹ стержень длиной l = 20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня перпендикулярно его оси. Определить разность потенциалов U на концах стержня.
- 337.В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. При этом по цепи прошел заряд Q=50 мкКл. Определить изменение магнитного потока $\Delta \Phi$ через кольцо; если сопротивление цени гальванометра R=10 Ом.
- 338.Соленоид сечением S = 10 см 2 содержит $N = 10^3$ витков. При силе тока I = 5 А магнитная индукция B поля внутри соленоида равна 0,05 Тл. Определить индуктивность L соленоида.
- 339. На картонный каркае длиной l = 0.8 м и диаметром D = 4 см намотан в один слой провод диаметром d = 0.25 мм так, что витки плотно прилегают друг к другу. Вычислить индуктивность L получившегося соленоида.
- 340.Катушка, намотанная на магнитный цилиндрический каркас, имеет N=250~ витков и индуктивность $L_1=36~$ мГн. Чтобы увеличить индуктивность катушки до $L_2=100~$ мГн, обмотку катушки сняли и заменили обмоткой из более тонкой проволоки с таким расчетом, чтобы длина катушки осталась прежней. Сколько витков оказалось в катушке после перемотки?
- 341.Индуктивность L соленоида, намотанного в один слой на немагнитный каркас, равна 0.5 мГн. Длина l соленоида равна 0.6 м, диаметр D=2 см. Определить отношение n числа витков соленоида к его длине.
- 342.Соленоид содержит N=800 витков. Сечение сердечника (из немагнитного материала) $S=10~{\rm cm}^2$. По обмотке течет ток, создающий поле с индукцией B=8 мТл. Определить среднее значение ЭДС $<\varepsilon_{\rm S}>$ самоиндукции, которая возникает на зажимах соленоида, если сила тока уменьшается практически до нуля за время $\Delta t=0.8$ мс.
- 343.По катушке индуктивностью L=8 мк Γ н течет ток I=6 А. Определить среднее значение ЭДС $<\varepsilon_S>$ самоиндукции, возникающей в контуре, если сила тока изменится практически до нуля за время $\Delta t=5$ мс.

Оптика.

- 344. На мыльную пленку с показателем преломления n=1,33 падает по нормали монохроматический свет с длиной волны $\lambda=0,6$ мкм. Отраженный свет в результате интерференции имеет наибольшую яркость. Какова наименьшая возможная толщина d_{\min} плёнки? [0,113 мкм]
- 345.На сколько процентов уменьшается интенсивность света после прохождения через призму Николя, если потери света составляют 10%? [На 55%]
- 346.Определить максимальную спектральную плотность $(r_{v,T})_{max}$ энергетической светимости (излучательности), рассчитанную на 1 нм в спектре излучения абсолютно черного тела. Температура тела T = 1 К. [13 Вт/(м²·нм)]
- 347.Определить энергию ε , массу m и импульс p фотона с длиной волны $\lambda = 1,24$ нм. $[1,6010^{16}$ Дж; $1,78\cdot10^{-31}$ кг; $5,35\cdot10^{-25}$ кг·м/с]
- 348.На пластинку падает монохроматический свет ($\lambda = 0.42$ мкм). Фототок прекращается при задерживающей разности потенциалов U = 0.95 В. Определить работу A выхода электронов с поверхности пластины. [2 эВ].
- 349.На цинковую пластину падает пучок ультрафиолетового излучения ($\lambda = 0.2$ мкм). Определить максимальную кинетическую энергию T_{max} и максимальную скорость v_{max} фотоэлектронов. [2,2 эВ; 8,8·10⁵ м/с]
- 350.. Определить максимальную скорость v_{max} фотоэлектрона, вырванного с поверхности металла γ квантом с энергией $\varepsilon = 1,53 \text{ M} ext{ M} ext{B} [2,91 \cdot 10^8 \text{ m/c}]$
- 351.Определить угол v рассеяния фотона, испытавшего соударение со свободным электроном, если изменение длины волны при рассеянии $\Delta \lambda = 3,63\,$ пм. [120°]
- 352. Фотон с энергией ε_1 , равной энергии покоя электрона (m_0c^2) , рассеялся на свободном электроне на угол $\alpha = 120^\circ$. Определить энергию ε_2 рассеянного фотона и кинетическую энергию T электрона отдачи (в единицах m_0c^2). $[0,4 m_0c^2; 0,6 m_0c^2]$

- 353.Поток энергии, излучаемой электрической лампой, $\Phi_e = 600$ Вт. На расстоянии r = 1 м от лампы перпендикулярно падающим лучам расположено круглое плоское зеркальце диаметром d = 2 см. Определить силу F светового давления на зеркальце. Лампу рассматривать как точечный изотропный излучатель. [0,1] нК
- 354.. Параллельный пучок монохроматического света с длиной волны $\lambda = 0,663$ мкм падает на зачерненную поверхность и производит на нее давление p = 0,3 мкПа. Определить концентрацию n фотонов в световом пучке. [10^{12} м⁻³]
- 355. Найти показатель преломления жидкости, если радиус r_3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны $\lambda = 0.6$ мкм равен 0.82 мм. Радиус кривизны линзы R = 0.5 м.
- 356.На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны $\lambda = 500$ нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину d_{\min} пленки, если показатель преломления материала пленки n = 1,4.
- 357. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l=1 см укладывается N=10 темных интерференционных полос. Длина волны $\lambda=0,7$ мкм.
- 358.На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны $\lambda = 500$ нм. Найти радиус R линзы, если радиус четвертого, темного кольца Ньютона в отраженном свете $r_4 = 2$ мм.
- 359.На тонкую глицериновую пленку толщиной d=1,5 мкм нормально к ее поверхности падает белый свет. Определить длины волн лучей видимого участка спектра $(0,4 \le \lambda \le 0,3)$ мкм, которые будут ослаблены в результате интерференции.
- 360.На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления n=1,3. Пластинка освещена параллельным пучком монохроматического света с длиной волны $\lambda=640$ нм, падающим на пластинку нормально. Какую минимальную толщину d_{\min} должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?
- 361.На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны $\lambda = 500$ нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b = 0.5 мм. Определить угол α между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин n = 1.6.
- 362.Плосковыпуклая стеклянная линза с f = 1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете $r_5 = 1,1$ мм. Определить длину световой волны λ .
- 363.Между двумя плоскопараллельными пластинами на расстоянии L=10 см от границы их соприкосновения находится проволока диаметром d=0.01 мм, образуя воздушный клин. Пластины освещаются нормально падающим монохроматическим светом ($\lambda=0.6$ мкм). Определить ширину b интерференционных полос, наблюдаемых в отраженном свете.
- 364. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматический светом (λ =590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d_3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.
- 365.Какое наименьшее число N_{\min} штрихов должка содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн $\lambda_1 = 589,0$ нм и $\lambda_2 = 589,6$ нм? Какова длина l такой решетки, если постоянная решетки d = 5 мкм?
- 366. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет Постоянная дифракционной решетки в n=4,6 раза больше длины световой волны. Найти общее число M дифракционных максимумов, которые теоретически можно наблюдать в данном случае.
- 367. На дифракционную решетку падает нормально параллельный пучок белого света. Спектру третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (λ = 780 нм) спектра третьего порядка?
- 368.На дифракционную решетку, содержащую n = 600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L =1,2 м. Границы видимого спектра: $\lambda_{\rm кp}$ = 780 нм, $\lambda_{\rm \varphi}$ = 400 нм.
- 369. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом $\theta = 65^{\circ}$ к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны λ рентгеновского излучения.
- 370.На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна ($\lambda = 600$ нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму, $\phi = 20^{\circ}$. Определить ширину a щели.
- 371.На дифракционную решетку, содержащую n=100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол $\Delta \phi = 16^{\circ}$. Определить длину λ волны света, падающего на решетку.
- 372.Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками.
- 373. Кварцевую пластинку поместили между скрещенными николями. При какой наименьшей толщине d_{\min} кварцевой пластины поле зрения между николями будет максимально просветлено? Постоянная вращения α кварца равна 27 град/мм.
- 374. При прохождении света через трубку длиной $l_1=20$ см, содержащую раствор сахара концентрацией $C_1=10\%$, плоскость поляризации света повернулась на угол $\phi_1=13,3^\circ$. В другом растворе сахара, налитом в трубку длиной $l_2=15$ см, плоскость поляризации повернулась на угол $\phi_2=5,2^\circ$. Определить концентрации C_2 второго раствора.
- 375. Пучок света последовательно проходит через два николя, плоскости пропускания которых образуют между собой угол ϕ = 40°. Принимая, что коэффициент поглощения k каждого николя равен 0,15, найти, во сколько раз пучок света, выходящий из второго николя, ослаблен по сравнению с пучком, падающим на первый николь.
- 376. Угол падения ε луча на поверхность стекла ранен 60°. При этом отраженный пучок света оказался максимально поляризованным. Определить угол ε_2 преломления луча.
- 377. Частица движется со скоростью v = c/3, где c скорость света в вакууме. Какую долю энергий покоя составляет кинетическая энергия частицы?
- 378. Протон с кинетической энергией T = 3 ГэВ при торможении потерял треть этой энергии. Определить, во сколько раз изменился релятивистский импульс α -частицы.

- 379. При какой скорости β (в долях скорости света) релятивистская масса любой частицы вещества в n=3 раза больше массы покоя?
- 380. Определить отношение релятивистского импульса p электрона с кинетической энергией T=1,53 МэВ к комптоновскому импульсу m_0c электрона.
- 381.Скорость электрона v = 0.8 c (где c скорость света в вакууме). Зная энергию покоя электрона в мегаэлектрон-вольтах, определить в тех же единицах кинетическую энергию T электрона.
- 382.Протон имеет импульс $p=469~{\rm MpB/c}$. Какую кинетическую энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое? (1 ${\rm MpB/c}=5,33\cdot10^{-22}~{\rm kr\cdot m/c})$
- 383.Во сколько раз релятивистская масса m электрона, обладающего кинетической энергией T=1,53 Мэ3, больше массы покоя m_0 ?
- 384. Какую скорость β (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя?
- 385. Релятивистский электрон имел импульс $p_1 = m_0 c$. Определить конечный импульс этого электрона (в единицах $m_0 c$), если его энергия увеличилась в n=2 раза.
- 386. Релятивистский протон обладал кинетической энергией, равной энергии покоя. Определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится в n=2 раза.
- 387.Вычислить истинную температуру T вольфрамовой раскаленной ленты, если радиационный пирометр показывает температуру $T_{\text{рад}} = 2,5$ кК. Принять, что поглощательная способность для вольфрама не зависит от частоты излучения и равна $a_1 = 0,35$.
- 388. Черное тело имеет температуру $T_1 = 500$ К. Какова будет температура T_2 тела, если в результате нагревания поток излучения увеличится в n = 5 раз?
- 389. Красная граница фотоэффекта для цинка λ_0 = 310 нм. Определить максимальную кинетическую энергию $T_{\rm max}$ фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны $\lambda=200$ нм.
- 390. На поверхность калия падает свет с длиной волны $\lambda = 150$ нм. Определить максимальную кинетическую энергию $T_{\rm max}$ фотоэлектронов.
- 391. Фотон с энергией $\varepsilon = 10$ эВ падает на серебряную пластину и вызывает фотоэффект. Определить импульс p, полученный пластиной, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластин.
- 392. На фотоэлемент с катодом из лития падает свет с длиной волны $\lambda = 200$ нм. Найти наименьшее значение задерживающей разности потенциалов $_{\min}$ которую нужно приложить к фотоэлементу, чтобы прекратить фототок.
- 393.Какова должна быть длина волны излучения, падающего на платиновую пластину, чтобы максимальная скорость фотоэлектронов была = 3 Mm/c?
- 394. На металлическую пластину направлен пучок ультрафиолетового излучения ($\lambda = 0.25$ мкм). Фототок прекращается при минимальной задерживающей разности потенциалов $U_{\min} = 0.08$ В. Определить работу выхода A электронов из металла.
- 395.На поверхность металла падает монохроматический свет с длиной волны $\lambda = 0,1$ мкм. Красная граница фотоэффекта $\lambda_0 = 0,3$ мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии?
- 396. На металл падает рентгеновское излучение с длиной волны $\lambda = 1$ нм. Пренебрегая работой выхода, определить максимальную скорость v_{max} фотоэлектронов.
- 397. На металлическую пластину направлен монохроматический пучок света с частотой $v = 7,3 \cdot 10^{14}$ Гц. Красная граница λ_0 фотоэффекта для данного материала равна 560 нм. Определить максимальную скорость $v_{\rm max}$ фотоэлектронов.
- 398. На цинковую пластину направлен монохроматический пучок света. Фототок прекращается при задерживающей разности потенциалов U = 1,5 В. Определить длину волны λ света, падающего на пластину.
- 399. Фотон при эффекте Комптона на свободном электроне был рассеян на угол $\theta = \pi/2$. Определив импульс p (в МэВ/с), приобретенный электроном, если энергия фотона до рассеяния была $\varepsilon_1 = 1,02$ МэВ.
- 400.Рентгеновское излучение ($\lambda=1$ нм) рассеивается электронами, которые можно считать практически свободными. Определить максимальную длину волны λ_{\max} рентгеновского излучения в рассеянном пучке.
- 401. Какая доля энергии фотона приходится при эффекте Комптона на электрон отдачи, если рассеяние фотона происходит на угол $\theta = \pi/2$? Энергия фотона до рассеяния = 0,51 МэВ.
- 402.Определить максимальное изменение длины волны $(\Delta \lambda)_{\text{max}}$ при комптоновском рассеянии света на свободных электронах и свободных протонах.
- 403. Фотон с длиной волны $\lambda_1 = 15$ пм рассеялся на свободном электроне. Длина волны рассеянного фотона $\lambda_2 = 16$ пм. Определить угол рассеяния.
- 404. Фотон с энергией ε_1 = 0,51 МэВ был рассеян при эффекте Комптона на свободном электроне на угол θ = 180°. Определить кинетическую энергию T электрона отдачи.
- 405.В результате эффекта Комптона фотон с энергией = 1,02 МэВ рассеян на свободных электронах на угол θ =150°. Определить энергию ε_2 рассеянного фотона.
- 406.Определить угол θ , на который был рассеян квант с энергией ϵ_1 = 1,53 МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи T=0,51 МэВ.
- 407. Фотон с энергией ε_1 = 0,51 МэВ при рассеянии на свободном электроне потерял половину своей энергии. Определить угол рассеяния θ .
- 408.Определить импульс p_e электрона отдачи, если фотон с энергией $\varepsilon_1 = 1,53$ МэВ в результате рассеяния на свободном электроне потерял $\frac{1}{3}$ своей энергии.
- 409.Определить энергетическую освещенность (облученность) $E_{\rm e}$ зеркальной поверхности, если давление p, производимое излучением, равно 40 мкПа. Излучение падает нормально к поверхности.
- 410. Давление p света с длиной волны $\lambda = 40$ нм, падающего нормально на черную поверхность, равно 2 нПа. Определить число N фотонов, падающих за время t = 10 c на площадь S = 1 мм² этой поверхности.
- 411. Определить коэффициент отражения ρ поверхности, если при энергетической освещенности $E_{\rm e} = 120~{\rm Br/m}^2$ давление p света на нее оказалось равным 0,5 мкПа.

- 412. Давление света, производимое на зеркальную поверхность, p = 5 мПа. Определить концентрацию n_0 фотонов вблизи поверхности, если длина волны света, падающего на поверхность, $\lambda = 0.5$ мкм.
- 413. На расстоянии r=5 м от точечного монохроматического ($\lambda=0.5$ мкм) изотропного источника расположена площадка (S=8 мм²) перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения P=100 Вт.
- 414. На зеркальную поверхность под углом $\alpha = 60^{\circ}$ к нормали надает пучок монохроматического света ($\lambda = 590$ нм). Плотность потока энергии светового пучка $\phi = 1$ кВт/м². Определить давление p, производимое светом на зеркальную поверхность.
- 415.Свет падает нормально на зеркальную поверхность, находящуюся на расстоянии r = 10 см от точечного изотропного излучателя. При какой мощности P излучателя давление p на зеркальную поверхность будет равным 1 мПа?

Элементы атомной физики и квантовой механики. Физика твердого тела.

- 416. Вычислить длину волны де Бройля λ для электрона, прошедшего ускоряющую разность потенциалов U = 22.5 В. [0.258] нм
- 417. Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию T_{\min} электрона, движущегося внутри сферической области диаметром d=0.1 нм. [15 эВ]
- 418. Определить относительную, неопределенность $\Delta p/p$ импульса движущейся частицы, если допустить, что неопределенность ее координаты равна длине волны де Бройля. [0,16]
- 419.Вычислить энергетический эффект Q реакции ${}_{4}^{9}$ Be+ ${}_{2}^{4}$ He $\rightarrow {}_{6}^{12}$ C+ ${}_{0}^{1}$ n. [5,71 МэВ]
- 420.Невозбужденный атом водорода поглощает квант излучения с длиной волны l = 102,0 нм. Вычислить, пользуясь теорией Бора, радиус r электронной орбиты возбужденного атома водорода.
- 421.Вычислить по теории Бора радиус r_2 второй стационарной орбиты и скорость v_2 электрона на этой орбите для атома водорода.
- 422. Вычислить по теории Бора период T вращения электрона в атоме водорода, находящегося в возбужденном состоянии, определяемом главным квантовым числом n=2.
- 423. Определить изменение энергии ΔE электрона в атоме водорода при излучении атомом фотона с частотой $v = 6,28 \cdot 10^{14} \, \mathrm{Fg}$.
- 424. Во сколько раз изменится период T вращения электрона в атоме водорода, если при переходе в невозбужденное состояние атом излучил фотон с длиной волны $\lambda = 97.5$ нм?
- 425. На сколько изменилась кинетическая энергия электрона в атоме водорода при излучении атомом фотона с длиной волны $\lambda = 435$ нм?
- 426.В каких пределах $\Delta \lambda$ должна лежать длина волн монохроматического света, чтобы при возбуждении атомов водорода квантами этого света радиус r_n орбиты электрона увеличился в 16 раз?
- 427.В однозарядном ионе лития электрон перешел с четвертого энергетического уровня на второй. Определить длину волны λ излучения, испущенного ионом лития.
- 428. Электрон в атоме водорода находится на третьем энергетическом уровне, Определить кинетическую T, потенциальную Π и полную E энергию электрона. Ответ выразить в электрон-вольтах.
- 429. Фотон выбивает из атома водорода, находящегося в основном состоянии, электрон с кинетической энергией T = 10 эВ. Определить энергию ε фотона,
- 430.Вычислить наиболее вероятную дебройлевскую длину волны λ молекул азота, содержащихся в воздухе при комнатной температуре.
- 431. Определить энергию ΔT , которую необходимо дополнительно сообщить электрону, чтобы его дебройлевская длина волны уменьшилась от $\lambda_1 = 0,2$ мм до $\lambda_2 = 0,1$ нм.
- 432. На сколько по отношению к комнатной должна измениться температура идеального газа, чтобы дебройлевская длина волны λ его молекул уменьшилась на 20%?
- 433. Параллельный пучок моноэнергетических электронов падает нормально на диафрагму в виде узкой прямоугольной щели, ширина которой a = 0.06 мм. Определить скорость этих электронов, если известно, что на экране, отстоящем от щели на расстоянии l = 40 мм, ширина центрального дифракционного максимума b = 10 мкм.
- 434.При каких значениях кинетической энергии T электрона ошибка в определении дебройлевской длины волны по нерелятивистской формуле не превышает 10%?
- 435.Из катодной трубки на диафрагму с узкой прямоугольной щелью нормально к плоскости диафрагмы направлен поток моноэнергетических электронов. Определить анодное напряжение, трубки, если известно, что на экране, отстоящем от щели на расстоянии l=0.5 м, ширина центрального дифракционного максимума $\Delta x=10.0$ мкм. Ширину b щели принять равной 0.10 мм.
- 436. Протон обладает кинетической энергией T=1 кэВ. Определить дополнительную энергию ΔT , которую необходимо ему сообщить для того, чтобы длина волны λ де Бройля уменьшилась в три раза.
- 437. Определить длины волн де Бройля α -частицы и протона, прошедших одинаковую ускоряющую разность потенциалов U = 1 кB.
- 438. Электрон обладает кинетической энергией T = 1,02 МэВ. Во сколько раз изменится длина волны де Бройля, если кинетическая энергия T электрона уменьшится вдвое?
- 439. Кинетическая энергия T электрона равна удвоенному значению его энергии покоя $(2m_0c^2)$. Вычислить длину волны λ де Бройля для такого электрона.
- 440.Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию электрона, движущегося внутри сферы радиусом R = 0.05 нм.
- 441.Используя соотношение неопределенностей, оценить наименьшие ошибки Δv в определении скорости электронам протона, если координаты центра масс этих частиц могут быть установлены с неопределенностью 1 мкм.
- 442. Какова должна быть кинетическая энергия T протока в моноэнергетическом пучке, используемого для исследования структуры с линейными размерами $l \approx 10^{-13}$ см?

- 443. Используя соотношение неопределенностей, оценить ширину l одномерного потенциального ящика, в котором минимальная энергия электрона $E_{\min} = 10$ эВ.
- 444. Альфа-частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Используя соотношение неопределенностей, оценить ширину l ящика, если известно, что минимальная энергия α -частицы $E_{\min} = 8$ МэВ.
- 445.Среднее время жизни атома в возбужденном состоянии составляет $\Delta t = 10^{-8}$ с. При переходе атома в нормальное состояние испускается фотон, средняя длина волны $<\lambda>$ которого равна 800 нм. Оценить ширину $\Delta\lambda$, излучаемой спектральной линии, если не происходит ее уширения за счет других процессов.
- 446.Для приближенной оценки минимальной энергии электрона в атоме водорода можно предположить, что неопределенность Δr радиуса r электронной орбиты и неопределенность Δp импульса p электрона на такой орбите соответственно связаны следующим образом: $\Delta r \approx r$ и $\Delta p \approx p$. Используя эти связи, а также соотношение неопределенностей, найти значение радиуса электронной орбиты, соответствующего минимальной энергии электрона в атоме водорода.
- 447. Моноэнергетический пучок электронов высвечивает в центре экрана электронно-лучевой трубки пятно радиусом $r \approx 10^3$ см. Пользуясь соотношением неопределенностей, найти, во сколько раз неопределенность Δx координаты электрона на экране в направлении, перпендикулярном оси трубки, меньше размера r пятна. Длину L электронно-лучевой трубки принять равной 0.50 м, а ускоряющее электрон напряжение U равным 20 кВ.
- 448.Среднее время жизни Δt атома в возбужденном состоянии составляет около 10^{-6} с. При переходе атома в нормальное состояние испускается фотон, средняя длина волны $<\lambda>$ которого равна 400 нм. Оценить относительную ширину $\Delta\lambda/\lambda$ излучаемой спектральной линии, если не происходит уширения линии за счет других процессов.
- 449.Для приближенной оценки минимальной энергии электрона в атоме водорода можно предположить, что неопределенность Δr радиуса r электронной орбиты и неопределенность Δp импульса p электрона на такой орбите соответственно связаны следующим образом: $\Delta r \approx r$ и $\Delta p \approx p$. Используя эти связи, а также соотношение неопределенностей, определить минимальное значение энергии T_{\min} электрона в атоме водорода.
- 450. Частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Найти отношение разности $\Delta E_{n, n+1}$ соседних энергетических уровней к энергии E_n частицы в трех случаях:1) n=2;2) n=5;3) $n\to\infty$.
- 451. Электрон находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной $l = 0,1\,$ нм. Определить в электрон-вольтах наименьшую разность энергетических уровней электрона.
- 452. Частица в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной l находится в возбужденном состоянии (n=3). Определить, в каких точках интервала 0 < x < l плотность вероятности нахождения частицы имеет максимальное и минимальное значения.
- 453.В прямоугольной потенциальной яме шириной l с абсолютно непроницаемыми стенками $(0 \le x < l)$ находится частица в основном состоянии. Найти вероятность ω местонахождения этой частицы о области $^{1}/_{4} l < x < ^{3}/_{4} l$.
- 454. Найти период полураспада $T_{\frac{1}{2}}$ радиоактивного изотопа, если его активность за время t = 10 сут уменьшилась на 24% по сравнению с первоначальной.
- 455. Определить, какая доля радиоактивного изотопа $^{225}_{89}{\rm Ac}$ распадается в течение времени t=6 сут.
- 456. Активность A некоторого изотопа за время t = 10 сут уменьшилась на 20%. Определить период полураспада этого изотопа.
- 457. Определить массу m изотопа $^{131}_{53}{
 m I}$, имеющего активность $A=37~\Gamma{
 m K}$ к.
- 458. Найти среднюю продолжительность жизни τ атома радиоактивного изотопа кобальта | $^{60}_{27}$ Co.
- 459.Счетчик α -частиц, установленный вблизи радиоактивного изотопа, при первом измерении регистрировал $N_1 = 1400$ частиц в минуту, а через время t = 4 ч только $N_2 = 400$. Определить период полураспада $T_{\frac{1}{2}}$ изотопа.
- 460.Во сколько раз уменьшится активность изотопа $^{32}_{15}$ P через время t=20 сут?
- 461. На сколько процентов уменьшится активность изотопа иридия $^{192}_{77}$ Ir за время t = 15 сут?
- 462.Считая, что в одном акте деления ядра урана 235 U освобождается энергия 200 МэВ, определить массу m этого изотопа, подвергшегося делению при взрыве атомной бомбы с тротиловым эквивалентом $30\cdot10^6$ кг, если тепловой эквивалент тротила q равен 4,19 МДж/кг.
- тила q равен 4,19 МДж/кг. 463.. При делении ядра урана ²³⁵U под действием замедленного нейтрона образовались осколки с массовыми числами $M_1 = 90$ и $M_2 = 143$. Определить число нейтронов, вылетевших из ядра в данном акте деления. Определить энергию и скорость каждого из осколков, если они разлетаются в противоположные стороны и их суммарная кинетическая энергия T равна 160 МэВ.
- 464.Определить теплоту Q, необходимую для нагревания кристалла калия массой m=200 г от температуры $T_1=4$ К до температуры $T_2=5$ К. Принять характеристическую температуру Дебая для калия $\Theta_{\rm D}=100$ К и считать условие $T\ll\Theta_{\rm D}$ выполненным.
- 465.Вычислить характеристическую температуру Θ_D Дебая для железа, если при температуре $T=20~\mathrm{K}$ молярная теплоемкость железа $C_m=0,226~\mathrm{Дж/K\cdot monb}$. Условие $T\ll\Theta_D$ считать выполненным.
- 466. Система, состоящая из $N=10^{20}$ трехмерных квантовых осцилляторов, находится при температуре $T=\Theta_{\rm D}$ ($\Theta_{\rm D}=250$ K). Определить энергию E системы.
- 467. Медный образец массой m=100 г находится при температуре $T_1=10$ К. Определить теплоту Q, необходимую для нагревания образца до температуры $T_2=20$ К. Можно принять характеристическую температуру Θ_D для меди равной 300 К, а условие $T \ll \Theta_D$ считать выполненным.

ДВГУПС					
Кафедра «Физика и теоретическая ме- ханика» 2 семестр 20/20 уч.г. Экзаменатор Антонычева Е.А.	Экзаменационный билет № 1 по дисциплине «Физика» для специальности 23.05.04 Эксплуатация железных дорог Специализация "Грузовая и коммерческая работа"	«Утверждаю» Заведующий кафедрой /Сюй А.В./ Подпись и Ф.И.О. «»20 г.			

- 1. Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-Лапласа для расчета индукции магнитного поля бесконечного, прямого проводника с током. (ОПК-2)
- 2. Складываются два колебания одинакового направления и одинакового периода $x_1 = A_1 \sin \omega_1 t$ и $x_2 = A_2 \sin(\omega_2(t+\tau))$, где $A_1 = A_2 = 3$ см, $\omega_1 = \omega_2 = \pi c^{-1}$, $\tau = 0.5$ с. Определить амплитуду A и начальную фазу ϕ_0 результирующего колебания. Написать его уравнение. Построить векторную диаграмму для момента времени t = 0. (ОПК-2)
- 3. Электрон прошел ускоряющую разность потенциалов $U=800~\mathrm{B}$ и, влетев в однородное магнитное поле $B=47~\mathrm{mTn}$, стал двигаться по винтовой линии с шагом $h=6~\mathrm{cm}$. Определить радиус R винтовой линии. (ОПК-2)

ДВГУПС					
Кафедра «Физика и теоретическая ме- ханика»	Экзаменационный билет № 3 по дисциплине «Физика» для специальности 23.05.04 Экс-	«Утверждаю» Заведующий кафедрой /Сюй А.В./			
2 семестр 20/20 уч.г. Экзаменатор Антонычева Е.А.	плуатация железных дорог Спе- циализация "Грузовая и коммерче- ская работа"	Подпись и Ф.И.О. «»20 г.			

- 1. Опыт Резерфорда. Постулаты Бора. Спектр атома водорода по Бору. Достоинства и недостатки теории Бора. (ОПК-2)
- 2. Альфа-частица, пройдя ускоряющую разность потенциалов, стала двигаться в однородном магнитном поле (= 50 мТл) по винтовой линии с шагом h=5 см и радиусом R=1 см. Определить ускоряющую разность потенциалов, которую прошла альфа-частица. (ОПК-2)
- 3. В прямоугольной потенциальной яме шириной l с абсолютно непроницаемыми стенками $(0 < x < l\)$ находится частица в основном состоянии. Найти вероятность ω местонахождения этой частицы о области $^{1}/_{4} \ l < x < ^{3}/_{4} l$. (ОПК-2)